
Problem Determination Tools for z/OS

Common Component
Customization Guide and User Guide
Version 1 Release 7

SC19-4159-05

IBM

Problem Determination Tools for z/OS

Common Component
Customization Guide and User Guide
Version 1 Release 7

SC19-4159-05

IBM

Note
Before you read this document, look at the general information under “Notices” on page 109.

Edition notice

This edition, which is published in December 2016, applies to Version 1 Release 7 Modification Level 0 of IBM
Problem Determination Tools for z/OS Common Component (program number 5655-IPV), and to Version 13
Release 1 Modification Level 0 of IBM File Manager for z/OS (program number 5655-Q12), IBM Fault Analyzer for
z/OS (program number 5655-Q11), IBM Debug for z Systems (program number 5655-Q10), IBM Application
Performance Analyzer for z/OS (program number 5697-Q49), and to all subsequent releases and modifications until
otherwise indicated in new editions.

IBM welcomes your comments. For information on how to send comments, see “How to send your comments to
IBM” on page vi.

This publication is available on the Web at:

www.ibm.com/software/awdtools/filemanager/

© Copyright IBM Corporation 2012, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|

Contents

Preface v
Who should use this document v
Terminology used in this document v
Summary of changes v
How to send your comments to IBM vi

If you have a technical problem vii

Chapter 1. Introduction to IBM Problem
Determination Tools Common
Component 1
1. Common Server 1
2. IPVLANGX, IPVLANGP and IPVLANGO. . . . 2
3. Interactive Panel Viewer. 2

Chapter 2. Server overview 3
Sample server procedure 3
Startup, shutdown, and activity tracing 4
Configuration file keyword descriptions 4

Chapter 3. Customizing the PDTCC
Server 7
Required Authorizations 7

Example commands for RACF 8
Setting SSL encrypted communications 8
Update sample IPVCONFG 9
Create matching WORKDIR by running job
IPVMKDIR 10
Check address space timeout 10
Add ports to TCPIP reservation list 10
Configuration considerations for IBM Explorer for
z/OS (z/OS Explorer) 11

Chapter 4. Options 13
Option descriptions. 13

EventProcessingExit 13
Locale 14

Using an IPVOPTLM configuration-options module 14

Chapter 5. Quick start guide for
compiling and assembling programs
for use with IBM Application Delivery
Foundation for z Systems family of
products 17
Updating your build process 18
Updating your promotion process 19
Preparing your programs 19

Enterprise COBOL for z/OS Version 5 programs 20
Enterprise COBOL for z/OS Version 4 programs 20
Enterprise COBOL for z/OS Version 3 and
COBOL for OS/390 and VM programs 24
COBOL for MVS and VM programs 28
VS COBOL II programs 31
OS/VS COBOL programs. 35

Enterprise PL/I Version 3.7 and later programs 37
Enterprise PL/I Version 3.5 and Version 3.6
programs 42
Enterprise PL/I Version 3.4 and earlier programs 48
PL/I for MVS and VM and OS PL/I programs 52
z/OS XL C and C++ programs 55
Assembler programs 64

Chapter 6. IPVLANGX compiler listing
to side file conversion utility 69
Creating side files using IPVLANGX 69

IPVLANGX parameters 71
Including an IPVLANGX step in your SCLM
translator 72

High Level Assembler SCLM example 72
COBOL SCLM example 72

Chapter 7. IPVLANGP side file
formatting utility 75
Deferred Breakpoints Feature 76

Chapter 8. IPVLANGO Automatic
Binary Optimizer LANGX file update
utility 83

Chapter 9. Maintaining PD Tools
Common Component 85

Chapter 10. PDTCC event processing 87
Sender load module IPVEPSND 87

Usage 87
Example 88

Receiver load module IPVEPRCV 88
IPVCNF00 option EVENTPROCESSINGEXIT . . . 88
The Event Processing user exit 89

Example customer event processing user exit . . 89

Appendix A. Messages 91
Common Server messages 91
IPVLANGX messages 95
IPVLANGX return codes 100

Examples of IPVLANGX return codes 100

Appendix B. Troubleshooting 101
Error scenarios and tracing 101

Support resources and
problem-solving information 103
Searching IBM support Web sites for a solution . . 103

Searching the information center 103
Searching product support documents 103
IBM Support Assistant 104

© Copyright IBM Corp. 2012, 2016 iii

Obtaining fixes 104
My Notifications 105
Receiving support updates through RSS feeds . . 106
If you need to contact IBM Software Support . . . 106

Determining the business impact 107
Describing problems and gathering information 107
Submitting problems 108

Notices 109
Trademarks 111

Bibliography 113
File Manager publications 113
Related publications for Problem Determination
Tools 113
Related publications for COBOL 113
Related publications for PL/I 113
Related publications for z/OS 113

Index 115

iv PD Tools Common Component Customization Guide and User Guide V1R7

Preface

This document provides information for installing, configuring, and using the
IBM® Problem Determination Tools Common Component server.

Who should use this document
This document is intended for those persons responsible for installing and using
the IBM Problem Determination Tools Common Component server, and assumes a
working knowledge of:
v z/OS® operating system
v system programming
v configuration of servers

Terminology used in this document
In this document, the IBM Problem Determination Tools Common Component
server is referred to as the "PD Tools Common Component" server, or "PDTCC"
server.

The following names are used in this book:

IBM Application Delivery Foundation for z Systems (ADFz) family of products
Previously known as IBM Problem Determination Tools (PD Tools)
products.

IBM Debug for z Systems (zDebug)
Previously known as IBM Debug Tool for z/OS (Debug Tool).

Summary of changes
Sixth Edition (SC19-4159-05)

This edition of the document provides information applicable to IBM Problem
Determination Tools for z/OS Common Component Version 1 Release 7. Here are
the major changes to this document from the previous edition.
v Updated product names to reflect current offerings. For more information, see

“Terminology used in this document.”
v Added File Manager Remote Services to the list of products that use the

Common Server. For more information, see “1. Common Server” on page 1.
v The updated chapter Chapter 8, “IPVLANGO Automatic Binary Optimizer

LANGX file update utility,” on page 83.

Fifth Edition (SC19-4159-04)
v A new feature PDTCC event processing is added. With the PDTCC event

processing feature, any products or systems including ADFz family of products
can send data to an asynchronous installation-written back-end for processing.
For more information, see Chapter 10, “PDTCC event processing,” on page 87.

v A new option EventProcessingExit is added, which is used to define an exit for
the PDTCC event processing feature. For more information, see
“EventProcessingExit” on page 13.

© Copyright IBM Corp. 2012, 2016 v

|

|
|
|

|
|

|

|
|
|

|
|

|
|

|
|

|

Fourth Edition (SC19-4159-03)

This edition provides information about how to maintain PD Tools Common
Component. For more information, see Chapter 9, “Maintaining PD Tools Common
Component,” on page 85.

Third Edition (SC19-4159-02)

This version of the book contains minor clarifications and corrections, and also the
following significant changes relative to the previous edition:

These new chapters:
v Chapter 6, “IPVLANGX compiler listing to side file conversion utility,” on page

69
v Chapter 7, “IPVLANGP side file formatting utility,” on page 75
v Chapter 8, “IPVLANGO Automatic Binary Optimizer LANGX file update

utility,” on page 83

These, and other minor changes, are indicated by a “|” changebar in the left
margin of the page.

Second Edition (SC19-4159-01)

This edition incorporates the changes that were introduced by PI14699 and
PI15084. It also acknowledges the integration of the common server, such that one
server is referenced, instead of individual servers for each product.

As well, “z/OS XL C and C++ programs” on page 55 has been reworked, to
provide more accurate information about C and C++ parameters.

First Edition (SC19-4159-00)

This edition of the document provides information applicable to Problem
Determination Tools Common Component Version 1 Release 7. Here are the major
changes to this document from the previous edition, for Version 1 Release 6,
SC19-3690.
v New sections “Update sample IPVCONFG” on page 9, “Create matching

WORKDIR by running job IPVMKDIR” on page 10, and “Check address space
timeout” on page 10.

v The new major topics Chapter 4, “Options,” on page 13 and Chapter 5, “Quick
start guide for compiling and assembling programs for use with IBM
Application Delivery Foundation for z Systems family of products,” on page 17.

The source files for this document were migrated from one source type to another.
As a result of this migration, there are minor formatting adjustments and other
changes. These changes, and other small changes such as minor editorial
clarifications, are not listed.

How to send your comments to IBM
We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

vi PD Tools Common Component Customization Guide and User Guide V1R7

1. Send an email to comments@us.ibm.com
2. Use the form on the Web at:

www.ibm.com/software/ad/rcf/
3. Mail the comments to the following address:

IBM Corporation
DTX/E269
555 Bailey Avenue
San Jose, CA
95141-1003
U.S.A.

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number:

PDTCC V1R7 Customization Guide and User Guide
SC19-4159-05

v The topic and page number that is related to your comment
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations use the personal information that you supply only
to contact you about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed in the previous topic. Instead, do
one of the following actions:
v Contact your IBM service representative
v Call IBM technical support
v Visit the IBM support portal at http://www.ibm.com/systems/z/support/

Preface vii

http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

viii PD Tools Common Component Customization Guide and User Guide V1R7

Chapter 1. Introduction to IBM Problem Determination Tools
Common Component

The IBM Problem Determination Tools Common Component has three major
features, which are shared by the IBM Application Delivery Foundation for z
Systems family of products:
1. Common Server
2. IPVLANGX, IPVLANGP, and IPVLANGO
3. Interactive Panel Viewer

From now on, the IBM Problem Determination Tools Common Component is
referred to as “PD Tools Common Component” or “PDTCC”.

1. Common Server
The Common Server is an extensible server program that runs on a z/OS system
to serve clients. Multiple clients can connect to a single instance of the server
program and request a service by invoking a specific extension of the server. The
server needs to be customized to install various extensions. Without installing the
extensions, the Common Server program alone does not serve any purpose.

The following products use the Common Server:

zDebug DTSP plug-in for Eclipse
See IBM z/OS Debugger Customization Guide V14.0 (5724-T07) for details on
customization.

Fault Analyzer plug-in for Eclipse
See Fault Analyzer for z/OS User's Guide and Reference V13.1 (SC19-4116) for
details on customization.

File Manager plug-in for Eclipse
See File Manager for z/OS Customization Guide V13.1 (SC19-4118) for details
on customization.

File Manager for CICS® V13.1.
See File Manager for z/OS Customization Guide V13.1 (SC19-4118) and File
Manager for z/OS User's Guide and Reference for CICS V13.1 (SC19-4122) for
details on customization.

File Manager Remote Services
See File Manager for z/OS Customization Guide V13.1 (SC19-4118) "Preparing
for File Manager Remote Services" for details on customization.

Application Performance Analyzer plug-in for Eclipse
See Application Performance Analyzer for z/OS Customization Guide V13.1
(SC14-7598) for details on customization.

For more information about configuring the product-specific extensions to the
Common Server, see the product-specific customization guide.

© Copyright IBM Corp. 2012, 2016 1

|
|

|
|

|
|
|

2. IPVLANGX, IPVLANGP and IPVLANGO
IPVLANGX, IPVLANGP and IPVLANGO provide utility programs that undertake
various functions.

Currently, the following products use one or more of these utilities:
v Fault Analyzer for z/OS
v IBM Debug for z Systems
v Application Performance Analyzer for z/OS

Here is more information about each utility:

IPVLANGX
A utility program that converts a compiler listing, or SYSADATA file, to a
special format ADFz side file, in the remainder of this document referred
to as a “LANGX side file”, or simply a “LANGX file”. A LANGX side file
is typically a lot smaller in size than a compiler listing. (See Chapter 6,
“IPVLANGX compiler listing to side file conversion utility,” on page 69 for
details.)

IPVLANGP
A utility program that creates a readable listing from a LANGX side file, a
SYSDEBUG side file generated by using the COBOL or PL/I
TEST(SEPARATE) option, or a COBOL program object containing DWARF
debugging information generated by the TEST(SOURCE) option (see
Chapter 7, “IPVLANGP side file formatting utility,” on page 75 for details).

This listing might be useful if side files, rather than compiler listings, are
kept in order to conserve DASD space. The utility program is able to
format the side file in a way that resembles the original compiler listing.

IPVLANGP also supports the setting of zDebug Deferred Breakpoints.

IPVLANGO
A utility program used to create new LANGX side files to support the
Automatic Binary Optimizer (see Chapter 8, “IPVLANGO Automatic
Binary Optimizer LANGX file update utility,” on page 83 for details).

3. Interactive Panel Viewer
The Interactive Panel Viewer feature enables ISPF-based applications to display
panels under CICS. The following products use the Interactive Panel Viewer
feature:

Fault Analyzer for z/OS
See Fault Analyzer for z/OS User's Guide and Reference V13.1 (SC19-4116) for
details on customization.

File Manager for CICS V13.1
See File Manager for z/OS Customization Guide V13.1 (SC19-4122) for details
on customization.

2 PD Tools Common Component Customization Guide and User Guide V1R7

|

|

|

Chapter 2. Server overview

The PDTCC server runs a process that identifies a connection request on a specific
port. The PDTCC server can be started manually, or during an IPL, by running a
customized procedure. A sample procedure, IPVSRV1, is supplied in the sample
library hlq.SIPVSAM1.

Multiple servers might be simultaneously run, provided different port numbers are
used for each server.

For participating products that use the PDTCC server, the server negotiates SSL
encrypted communications if configured to do so, then verifies the client user ID,
password, or passphrase. If valid, the server creates a new process for that user.

The PDTCC server consists of a main program module, IPVSRV, and supporting
message and API-related modules: IPVSEND, IPVRECV, IPVRXRCV, IPVRXSND,
IPVSRVTE, IPVSRVSL, IPVSRVRF, IPVSRVSF, IPVMSGT, IPVCMENU, IPVVRFY,
IPVCMJPN, IPVCTRC, IPVTRACE and IPVCMKOR.

IPVSRV requires a parameter string 'port family trace' where:

port Describes the port number that is used to bind and accept incoming
connections.

family The addressing family to bind to. For example, AF_INET, or AF_INET6.

trace N, T, D, U, or omitted. This parameter specifies the level of tracing to be
performed by the server, and is intended only for diagnostic purposes. N is
for no tracing, while T or D produce IPVTRACE, or STDOUT, outputs of
undocumented messages that show flow and processing details for
diagnostic purposes. U produces trace entries showing user connections to
participating ADFz products.

Sample server procedure
The PDTCC server is recommended to run as a started task, although it might be
run as a job.

A sample procedure, IPVSRV1, is supplied in the hlq.IPVSAM1 data set. Copy the
procedure to your procedure library.
//IPVSRV1 PROC PORT=2800,FAMILY=’AF_INET’,TRACE=N
//**
//* IBM Problem Determination Tools Common Components *
//* Release 7 *
//* *
//* Licensed Materials - Property of IBM *
//* *
//* 5655-W68 *
//* *
//* Copyright IBM Corp. 2006, 2012. *
//* All Rights Reserved. *
//* *
//* US Government Users Restricted Rights - Use, *
//* duplication or disclosure restricted by GSA ADP *
//* Schedule Contract with IBM Corp. *
//* *
//**

© Copyright IBM Corp. 2012, 2016 3

|

//* FAMILY=AF_INET|AF_INET6 for TCP/IP V4 or V6 socket and bind
//* TRACE=N|D|U No server trace, detailed trace or
//* user connection trace
//*
//* This is not a complete JCL procedure. It requires customisation
//* steps before running. To customise,
//* 1. Customise the IPVCONFG member
//* 2. Customise and run the IPVMKDIR sample job to match
//* 3. replace IPV with your high level qualifier for the PDTCC product
//* 4. Uncomment and replace CEE for your hlq for the LE C runtime
//* if SCEERUN is not in the site linklist
//*
//RUN EXEC PGM=IPVSRV,REGION=40M,
// PARM=(’&PORT &FAMILY &TRACE’)
// SET IPV=IPV >== Update HLQ
//* Common component authorised library
//STEPLIB DD DISP=SHR,DSN=&IPV.SIPVMODA >== PDTCC APF LIBRARY
//* DD DISP=SHR,DSN=CEE.SCEERUN >== LE C RUNTIME
//SYSPRINT DD SYSOUT=*
//IPVTRACE DD SYSOUT=* >== OUTPUT if Tracing
//STDOUT DD SYSOUT=*
//* Server wide, then participating product configurations
//CONFIG DD DISP=SHR,DSN=&IPV.SIPVSAM1(IPVCONFG)

Startup, shutdown, and activity tracing
The START procname operator command can be used to start the server.

To stop the server, the P procname operator command can be used.

To enable activity tracing, usually as an IBM support request, the following modify
command can be used:
F procname,APPL=TRACEON

To disable activity tracing, the following modify command can be used:
F procname,APPL=TRACEOFF

To display the release and PTF level of the running server, the following modify
command can be used:
F procname,APPL=VER

Configuration file keyword descriptions
The configuration data might contain line comments. Line comments begin with an
* or a #, and continue to the end of the line.

CONFIG=name
name is the name of the configuration as specified by the client. At least
one configuration is expected with a name of DEFAULT. Other
configuration keywords apply to the current CONFIG name, in top-down
order.

WORKDIR=/path
The CONFIG=DEFAULT set of parameters needs the WORKDIR=path
keyword. This keyword specifies where the server can write
semi-permanent (existing at least while the server task is running) files. A
sample job, IPVMKDIR is supplied in the sample library to create this
path.

SSL_REQUIRED=YES|TLSV1|TLSV1.1|TLSV1.2|NO (Optional, default is NO)
Determines whether SSL encrypted communications are mandatory for the

Sample server procedure

4 PD Tools Common Component Customization Guide and User Guide V1R7

server and the desired protocol level. SSL communications are achieved by
utilising the System SSL APIs. The default protocol level is TLS V1.1 when
YES is specified. Older clients (prior to common component client
13.1.0.16) require TLS V1.

To use TLS V1.2, clients must be at level 13.1.0.17 or later.

If SSL encryption is used, then the server uses a certificate stored in either
a RACF® keystore, when specified via the SSL_KEYRING keyword, or a
GSKKYMAN managed key database and certificate for this server as
specified in the SSL_CERT keyword or, if that keyword is omitted, at the
WORKDIR specified location.

SSL_CERT=/path/keyringfile (optional, for use of user created certificate)
The path and name of a key database that contains a stored certificate that
is used by the server. This parameter is passed to the gsk toolkit as the
GSK_KEYRING_FILE setting. If this parameter is omitted, the server
attempts to create a key database and self-signed certificate as it starts up.

SSL_CERTPW=keyringpw (optional, for use of user created certificate)
The password to be used to access the certificate repository. If omitted, the
server uses a default password.

SSL_KEYRING=userid/keyring
If SSL is being used for the server, this configuration option provides the
userid and keyring name for a certificate being held in a SAF keyring. The
userid should match the ID used when creating the keyring.

SSL_LABEL=labelstring (optional, for use of user created certificate)
The label of the certificate from the key database to be used.

SPAWN_ACCT=accountdata
Allows specification of the account data used for the spawned address
space. This is as per the _BPX_ACCT_DATA environment variable
discussed in the z/OS UNIX System Services Planning manual.

SPAWN_TIME=nn
Allows specification of the CPU time limit, in seconds, used for the
spawned address space.

SPAWN_PROGRAM=PROGRAM
Specification of the program that is launched for the client connection. The
server checks the existence of the named program. If you want to specify
the name of a z/OS UNIX executable file, rather than a load module in a
STEPLIB data set, include the path. Otherwise, the server creates a sticky
bit file in the WORKDIR specified location. Sticky bit is the mechanism in
the z/OS UNIX file system of indicating that this file is a load library
member. The program is launched as a USS process, but can be a
traditional z/OS program.

SPAWN_STEPLIB=steplib1:steplib2 (optional)
Allows specification of the run libraries that are used for the spawned
address space. Support for continuing library specifications is provided by
ending a line with the colon character.

SPAWN_PARMS_SECTION
This entry marks the beginning of extra parameters that are passed to the
spawned process. The contents of this area are determined by the products
that use the server.

Configuration file keyword descriptions

Chapter 2. Server overview 5

Launching a TSO environment is provided for by the common server when
the SPAWN_PROGRAM is set to IPVSRVTE. In such a configuration, the
launched process deals with these extra keywords that follow the
SPAWN_PARMS_SECTION:

SPAWN_DD=ddname=datasetname1:datasetname2
Specification of a data set or data sets that are allocated with
DISP=SHR to the supplied DD name.

SPAWN_DD=ddname=SYSOUT=c
Specification of a sysout allocation that is allocated with the
specified class c, to the supplied DD name.

SOCKETFIONBIO
Specification that the socket communications run in nonblocking
mode.

Specify this keyword only when the application for the particular
CONFIG allows or expects it.

TSO_CMD=command;
Specification of a command that is run in the TSO environment.
This command typically instigates the launch of the participating
products main serving function. This parameter can be repeated as
needed for multiple TSO commands.

MIXEDCASEPASS=YES|NO (optional, default is NO)
Determines whether uppercase translation is performed for incoming
passwords for this system. If this system supports mixed case passwords,
set this to YES and specify this keyword in the CONFIG=DEFAULT
section.

SPAWN_REGIONSZ=nnn (optional, default is to inherit the region size of the
server)

Determines the region size (in MB) for the launched process. Participating
products being launched have their own recommendations for this sizing.

Configuration file keyword descriptions

6 PD Tools Common Component Customization Guide and User Guide V1R7

Chapter 3. Customizing the PDTCC Server

This chapter provides you with instructions on how to customize the PDTCC
Server. In brief, this consists of the following general checklist:
v APF authorize the SIPVMODA library
v Add programs in SIPVMODA to program control
v Add user for server started task
v Add task to STARTED class
v Add sample IPVSRV1 to system procedure library
v Permit server user/group to BPX.SERVER facility
v Permit server user/group to CSF* profiles (if used)
v Update sample IPVCONFG
v Create matching WORKDIR by running job IPVMKDIR
v Review address space timeout settings

Required Authorizations
The STEPLIB hlq.SIPVMODA must be APF-authorized.

Associate the started task that is used to run the Common Server with a user ID
with an OMVS segment. Give the task READ access to the BPX.SERVER facility.
Make sure write access to the z/OS UNIX directory is available, as specified by the
WORKDIR= configuration parameter. Edit and run the job IPVMKDIR in the
sample library (IPV.SIPVSAM1) to create this directory. Furthermore, any users
logging in to the Common Server require read access to this location. Similarly, if
you configure the Common Server to a key database of your own creation, the
Common Server, and any users logging in to the Common Server, require read
access to the specified key database.

Products that make use of the SPAWN_JOBNAME configuration keyword, require
the user ID of the common server to be permitted to the BPX.SUPERUSER facility
and to the BPX.JOBNAME facility if that is defined.

If enhanced program security is enabled, at a minimum the following programs
must be defined to program control, unless BPX.DAEMON.HFSCTL was set up:
v IPVSRV
v IPVMSGT
v IPVCMENU
v IPVCMJPN
v IPVCMKOR
v UIPVMSGT
v IPV0LVL

To eliminate incorrect notifications about program control apply the fix for z/OS
APAR OA39888 (or equivalent for your z/OS level).

Alternatively, define all common server programs in the library IPV.SIPVMODA to
program control, rather than specifying individual programs.

If enhanced program security is enabled, IPVSRV must be defined with the MAIN
attribute, using the APPLDATA operand on the PROGRAM profile.

© Copyright IBM Corp. 2012, 2016 7

Example commands for RACF
To activate program control if not already active, use the following command:
SETROPTS WHEN(PROGRAM)

To add all common server programs in a library to program control, use the
following command:
RDEFINE PROGRAM IPV* ADDMEM(’IPV.SIPVMODA’//NOPADCHK) UACC(READ)

In addition, the following command is required for alias member UIPVMSGT:
RDEFINE PROGRAM UIPVMSGT ADDMEM('IPV.SIPVMODA'//NOPADCHK) UACC(READ)

To add individual programs, use the following command:
RDEFINE PROGRAM IPVSRV ADDMEM(’IPV.SIPVMODA’//NOPADCHK) UACC(READ)

To refresh, use the following command:
SETROPTS WHEN(PROGRAM) REFRESH

Note:

1. If you are using Japanese, then include the module IPVCMJPN in program
control.

2. If you are using Korean, then include the module IPVCMKOR in program
control.

If RACF, or an equivalent security product is implemented, the PDTCC Server
(IPVSRV1) started task must also be defined to the STARTED class. For example, to
add IPVSRV1 as an STC, the RACF commands in the example that is shown here
could be used, where ISPSRV1 is the name of your PDTCC Server procedure and
userid is the userid that the started task runs under:
RDEFINE STARTED IPVSRV1.* STDATA(USER(userid))

SETROPTS RACLIST(STARTED) REFRESH

For more information about started tasks and security, see the z/OS Security
Server RACF Security Administrator's Guide, or equivalent documentation for
your security product.

Setting SSL encrypted communications
The sample IPVCONFG configuration file member has SSL encrypted
communications active with the following line under the CONFIG=DEFAULT
section:
SSL_REQUIRED=YES

If SSL encryption is not required in your environment, comment out this line and
uncomment the next line (or alter your existing line to SSL_REQUIRED=NO).

If using a SAF keyring, uncomment and modify the SSL_KEYRING line. The
SSL_LABEL line should also be uncommented and modified if the certificate you
generate does not have a label of 'PDTCC Server Certificate'.

For use of a certificate in a keyring, the userid of the server task or job, as well as
the userids connecting to the server need to be permitted UPDATE access to the

8 PD Tools Common Component Customization Guide and User Guide V1R7

IRR.DIGTCERT.LISTING facility and CONTROL access to the
IRR.DIGCERT.GENCERT facility in order to share the certificate amongst users of
the common server.

For RACF users, a keyring and certificate could be created by the following
example commands:
RACDCERT ID(IPVSRV) ADDRING(RINGA)
RACDCERT GENCERT SITE SIZE(1024) -

SUBJECTSDN(-
CN(’Common Server’) -
OU(’ADL’) -
O(’ADL’) -
C(’AU’)) -

WITHLABEL(’PDTCC Server Certificate’)
RACDCERT ID(IPVSRV) -

CONNECT(SITE LABEL(’PDTCC Server Certificate’) -
RING(RINGA) USAGE(PERSONAL) -
DEFAULT)

SETR RACL REFR(DIGTCERT)

Note in the above that the userid IPVSRV is used for the userid of the common
server task.

Updating the server config to include SSL_KEYRING=IPVSRV/RINGA would use
the above generated certificate. These commands serve as a working example only
and should be updated as desired to match your needs. RACDCERT commands
are documented in the z/OS Security Server RACF Command Language Reference.

If you are using ICSF and have protected resources through the CSFSERV facility
class, the server user or group id needs to be permitted to the resource, for
example:
PERMIT CSF* CLASS(CSFSERV)

ID(groupid) ACCESS(READ)

For more details see the Cryptographic Services ICSF Administrator's Guide.

If you wish to specify a cipher string for the System SSL component to use, you
can do this by modifying the server JCL to specify an
ENVAR(GSK_V3_CIPHER_SPECS=xx) or ENVAR(GSK_V3_CIPHER_SPECS_EXPANDED=xx) as
required. The sample server JCL member IPVSRV1 includes an example format of
the above.

Update sample IPVCONFG
Update the sample configuration member to suit your site, according to the
comments in that member. In general terms, review the following items in the
config file:
v Alter SPAWN_DD=ddname=SYSOUT=C to suitable classes for your site. For

example, for tracing activity, the CONFIG=DEFAULT section contains a
SPAWN_DD=IPVTRACE=SYSOUT=H card that other configurations inherit and
write trace output (if activated) to. Adjust this class to a class suitable for your
site.

v Alter SPAWN_STEPLIB data set names to the installation high-level qualifiers for
the relevant libraries. The SPAWN_STEPLIB statement is not required if all of
the libraries are already in the linklist for your site.

Chapter 3. Customizing the PDTCC Server 9

v If a configuration makes use of the SPAWN_JOBNAME statement, then all
address spaces that are launched for that connection type run with that specified
jobname (the owner of each job reflects the user that is logged in).

v Do not alter CONFIG=name and SPAWN_PROGRAM=name values unless
otherwise detailed in the participating product's documentation.

The configuration file supports the setting and reference of substitution variables in
the following form:
$VAR=value

For setting these variables, specify the above form before the first CONFIG
statement, or between the CONFIG and SPAWN_PARMS_SECTION statements. If
using concatenations for the CONFIG DD, the first CONFIG refers to the
statements in the first of the concatenations.

In following statements in the configuration, occurrences of '$VAR' are replaced by
the 'value' specified. This could be used to represent high level qualifiers that are
repeated in the configuration file. For example, set the value:
$IPVHLQ=SYS1.IPV

Then allow a reference in a following statement, such as:
SPAWN_STEPLIB=$IPVHLQ.SIPVMODA

The sample IPVCONFG makes use of this for high level qualifiers but it could also
be used for other substitutions as desired.

Create matching WORKDIR by running job IPVMKDIR
This job can be found in the sample library and creates a directory to be used with
the server. As can be seen in the supplied sample, the job creates a directory
hierarchy in the form of
/etc/ipv/v17/ipvsrv1

You can alter this to suit your site, and the WORKDIR statement in the server
configuration needs updating to the created directory. Do not use /tmp as a
directory location.

As the files in the workdir need to be owned by the servers userid, and the
IPVMKDIR job issues the chown command, the file system they are mounted at
needs to allow the changing of userid via the SETUID attribute.

Check address space timeout
When an address space is launched for a client, and it has completed its current
function, the address space is waiting for TCP/IP communications from the peer.
In line with this, the client address space might be subject to an s522 abend if
waiting longer than the active site settings for job wait time. The job wait time is
controlled by the JWT parameter of the SMFPRMxx member, but might also be set to
never time out by the site settings for MAXCPUTIME in the site's BPXPRMxx member.
Set these parameters as needed by the site.

Add ports to TCPIP reservation list
Add the ports for the server, or servers, you want to run to the reserved port list in
your TCPIP configuration data.

10 PD Tools Common Component Customization Guide and User Guide V1R7

Configuration considerations for IBM Explorer for z/OS (z/OS Explorer)

The port number that is used by the ADFz server must be specified in the rse.env
directive PD_SERVER_PORT statement as follows:
PD_SERVER_PORT=nnnn

where nnnn is the port number.

rse.env is located in /etc/zexpl/. For more details, see /etc/zexpl/rse.env.

Chapter 3. Customizing the PDTCC Server 11

|

http://www.ibm.com/support/knowledgecenter/SSBDYH_3.0.1/com.ibm.zexpl.config.hostconfigref.doc/topics/hostinfo79.html

12 PD Tools Common Component Customization Guide and User Guide V1R7

Chapter 4. Options

For the IPVLANG utilities, you can specify installation-wide default options in the
IPVCNF00 parmlib configuration member.

You can create a member IPVCNF00 in SYS1.PARMLIB, or any other data set that
is part of the logical parmlib concatenation.

Note: If not providing general READ access to data sets in the logical parmlib
concatenation, then an IPVOPTLM configuration-options module can be used to
specify an alternative data set, as explained in “Using an IPVOPTLM
configuration-options module” on page 14.

If you do not specify an option, then it takes either the product default (as
indicated on the syntax diagram for each option), or has no value at all.

Options that are specified in the IPVCNF00 parmlib configuration member are
subject to these syntax rules:
v Only columns 1 - 71 are processed.
v Options can be specified anywhere in a line. They do not have to start in

column 1.
v You can use a blank or a comma as a delimiter.
v Options can be continued across any number of lines
v Options specifications are not case-sensitive—all options are converted to

uppercase.
v Comments are permitted anywhere and can be nested. The characters “/*”

identify the beginning of a comment, and “*/” identify the end.

Option descriptions
The following explains each option in detail.

EventProcessingExit

Use the EventProcessingExit option to define an exit that is to be invoked to
perform asynchronous event processing. For more information, see Chapter 10,
“PDTCC event processing,” on page 87.

Syntax

►► EventProcessingExit(exit-name) ►◄

exit-name
The name of an Event Processing user exit that contains an LE fetchable
function of the same name. The maximum length of the name is 8
characters.

If this option is changed, ADFz family of products that use the Event Processing
user exit are affected.

© Copyright IBM Corp. 2012, 2016 13

|

Locale

Syntax

►►
NOLOCALE

LOCALE(locale-name)
►◄

The Locale option specifies the locale to be used for cultural environment-
dependent presentation.

The locale name that is specified as locale-name can be one of those supplied with
z/OS C/C++ for the setlocale() runtime function. A list of locale names can be
found in the z/OS C/C++ Programming Guide, "Appendix D. Locales Supplied with
z/OS C/C++".

Specifying the NoLocale option is the equivalent to specifying Locale(C).

The following are affected by the Locale option:

IPVLANGP source code comments
Characters in source code comments which are considered non-printable
given the current locale are shown as periods.

Fault Analyzer for z/OS
Affected are things like date and time formatting, collating sequences of
sorted information, and determination of non-printable characters which
are shown as periods.

Note: If used, the equivalent Fault Analyzer for z/OS Locale option
overrides the IPVCNF00 Locale option specification.

Using an IPVOPTLM configuration-options module
An optional IPVOPTLM configuration-options module can be used to provide
settings which are required before reading the IPVCNF00 parmlib member.

The name of the configuration-options load module must be IPVOPTLM, and it
must be placed in an APF-authorized library in order to be used. Place the library
in LNKLST so that the IPVOPTLM load module can be found. IBM recommends
the use of IPV.SIPVMODA for this library.

A sample job to create an IPVOPTLM configuration-options load module is
provided as member IPVOPTLM in data set IPV.SIPVSAM1.

Individual settings in the IPVOPTLM configuration-options module are specified
using the IPVOPT macro, as explained in the sample job.

The following describes the currently only available setting.

IPVCNFDS

To accommodate installations that do not provide general READ access to
SYS1.PARMLIB (or any one of the data sets in the logical parmlib
concatenation), an alternative data set can be specified as follows:

IPVOPT IPVCNFDS,dsname

Locale

14 PD Tools Common Component Customization Guide and User Guide V1R7

where dsname is the name of the alternative parmlib data set.

The following example shows the specification of data set
PDTOOLS.PARMLIB as an alternative parmlib data set name:

IPVOPT IPVCNFDS,PDTOOLS.PARMLIB

Using an IPVOPTLM configuration-options module

Chapter 4. Options 15

Using an IPVOPTLM configuration-options module

16 PD Tools Common Component Customization Guide and User Guide V1R7

Chapter 5. Quick start guide for compiling and assembling
programs for use with IBM Application Delivery Foundation
for z Systems family of products

This chapter describes the minimal steps that are required to prepare your
programs for use with IBM Application Delivery Foundation for z Systems family
of products. For more detailed information, refer to 'Part 2. Preparing your
program for debugging' of the IBM z/OS Debugger User's Guide, 'Part 2. Fault
Analyzer Installation and Administration' of the Fault Analyzer for z/OS User's
Guide, or Appendix B. of the Application Performance Analyzer for z/OS User's Guide.

The purpose of this chapter is to provide instructions for a single compile method
for organizations that are using some combination of IBM Debug for z Systems,
Fault Analyzer for z/OS, and Application Performance Analyzer for z/OS. If your
enterprise is only using IBM Debug for z Systems, you can alternatively refer to
'Part 2. Preparing your program for debugging' of the IBM z/OS Debugger User's
Guide. If your enterprise is only using Fault Analyzer for z/OS, alternatively refer
to 'Part 2. Fault Analyzer Installation and Administration' of the Fault Analyzer for
z/OS User's Guide. If your enterprise is only using Application Performance
Analyzer for z/OS, alternatively refer to Appendix B of the Application Performance
Analyzer for z/OS User's Guide.

IBM Debug for z Systems, Fault Analyzer for z/OS and Application Performance
Analyzer for z/OS are designed to use load modules and other files that are
produced by IBM compilers. You must compile your programs with certain
compiler options so that they produce load modules and files that these products
can use.

This chapter uses the term 'source information files' to refer to the types of files
that are used by IBM Debug for z Systems, Fault Analyzer for z/OS and
Application Performance Analyzer for z/OS. The different kinds of source
information files that are the subject of discussion in this chapter include:
v SYSDEBUG files
v LANGX files
v Compiler listings
v DWARF files
v Expanded source files

Different compilers generate different kinds of source information files. If you use
more than one compiler, you might have more than one type of source information
library.

When you compile your programs with the compiler options described in this
chapter, you can use the load modules and source information files that are created
by the compilers as follows:
v Prepare the module for debugging (if you are using IBM Debug for z Systems).

IBM Debug for z Systems lets you work with program statements and variables.
When a program is compiled with the right options, the module that is
produced by the compiler can be debugged and a source information file, which
contains program statements, can be produced. When you use IBM Debug for z

© Copyright IBM Corp. 2012, 2016 17

|
|
|

|

|
|
|

|

|

|
|

|

Systems to debug a program, IBM Debug for z Systems uses the source
information file to display the program source statements in the source window.
Depending on the source language and compiler that are used, the load module,
the source information file, or the DWARF file contains information about
statements and variables, such as offsets and lengths, and contains information
that allows the debugger to locate statements and variables in storage. If you do
not compile with the correct compile options, debugging is limited to something
called 'disassembly' mode, where machine code is displayed, but no source
statements or variables.

v Use Fault Analyzer for z/OS to automatically pinpoint the source statement that
caused an abend, and can show you the values of variables in your programs at
the time of an abend.

v Use Application Performance Analyzer for z/OS to show you precisely which
program statements are using the most CPU time and wait time. Use this
information to tune your applications.

Updating your build process
If someone recently installed one or more of the IBM Application Delivery
Foundation for z Systems family of products on your system, the program build
processes might not have been updated yet. Updating the build processes is an
important and necessary part of implementing the IBM Application Delivery
Foundation for z Systems family of products.

In many organizations, there is clear ownership of these build processes. In other
organizations, it might not be obvious who makes the changes. Many
organizations use standard compile processes or PROCs that your system
administrators maintain and have updated to prepare programs for the IBM
Application Delivery Foundation for z Systems family of products. In this case,
find out what processes have been made available and how to use them. In other
organizations, each developer maintains their own compile JCL or PROCs to
compile programs. In this case, update your own compile JCL to prepare your
programs for the IBM Application Delivery Foundation for z Systems family of
products as described below.

Start by researching what is required for each compiler individually. For example,
the changes that are required for Enterprise COBOL for z/OS, Enterprise PL/I for
z/OS, C/C++ and Assembler are all slightly different.

In general, there are three changes that might be needed to compiler JCL to
produce programs that can be used by the IBM Application Delivery Foundation
for z Systems family of products:
1. Specify compiler options that are required by the IBM Application Delivery

Foundation for z Systems family of products.
2. Code the JCL to produce and save the source information files that the IBM

Application Delivery Foundation for z Systems family of products need. Newer
compilers can generate the required source information files directly. Some
older compilers require an extra step in the compile job to run a special utility
program that produces the needed file.

3. In certain environments, it is advantageous to include a special IBM Debug for
z Systems module into the application load module during the link-edit step. In
most cases this special module is optional, but it can simplify starting IBM

18 PD Tools Common Component Customization Guide and User Guide V1R7

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

Debug for z Systems for certain types of programs. For certain older compilers
running in certain environments, you must include a special module to enable
IBM Debug for z Systems.

Updating your promotion process
Typically, when a program is tested, program load modules are promoted through
different stages before reaching production. For example, when a new program is
compiled for the first time, it might be placed into a test load library. After unit
testing is completed, perhaps the compiled program is promoted to a quality
assurance environment. And eventually, it is promoted into production. On your
system, you might know these stages by different names, such as:
v Unit test
v System test
v Model office

Consider whether you want the ability to use IBM Debug for z Systems, Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS throughout
your programs’ life cycle. Even if you do not plan to use IBM Debug for z Systems
with production programs, Fault Analyzer for z/OS and Application Performance
Analyzer for z/OS are useful in those stages. To enable the IBM Application
Delivery Foundation for z Systems family of products at each stage, update your
promotion processes to retain the source information files. Promotions can be
accomplished by performing a recompile, a copy, or a move. Perform the same
steps with your source information files that you perform with your load modules
or object modules. For each load library or object library, have a corresponding set
of source information libraries. Whenever you promote a load module or object
module, promote the source information file as well. This ensures that the source
information file is available for Fault Analyzer and Application Performance
Analyzer, and you can continue to take advantage of the IBM Application Delivery
Foundation for z Systems family of products at all stages of your program’s life
cycle.

Preparing your programs
Each compiler produces different kinds of source information files, and each of the
IBM Application Delivery Foundation for z Systems family of products reads
different kinds of files. It can be time-consuming to research all the different
combinations, but for each compiler, there is a suggested method that is described
below. If you use the suggested methods, then your programs are ready to take
full advantage of the IBM Application Delivery Foundation for z Systems family of
products.
v “Enterprise COBOL for z/OS Version 5 programs” on page 20
v “Enterprise COBOL for z/OS Version 4 programs” on page 20
v “Enterprise COBOL for z/OS Version 3 and COBOL for OS/390 and VM

programs” on page 24
v “COBOL for MVS and VM programs” on page 28
v “VS COBOL II programs” on page 31
v “OS/VS COBOL programs” on page 35
v “Enterprise PL/I Version 3.7 and later programs” on page 37
v “Enterprise PL/I Version 3.5 and Version 3.6 programs” on page 42
v “Enterprise PL/I Version 3.4 and earlier programs” on page 48
v “PL/I for MVS and VM and OS PL/I programs” on page 52

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 19

|

|

|

|

|
|

|
|

|

|
|

v “z/OS XL C and C++ programs” on page 55
v “Assembler programs” on page 64

Enterprise COBOL for z/OS Version 5 programs
The following table shows various compiler options that can be used to prepare
Enterprise COBOL for z/OS Version 5 programs for use with theIBM Application
Delivery Foundation for z Systems family of products (IBM Debug for z Systems,
Fault Analyzer for z/OS and Application Performance Analyzer for z/OS). The
methods suggested in the following table indicate whether the program object
produced is suitable for a production environment. Program objects suitable for a
production environment have no significant runtime overhead.

The table shows what is required for full function.

Table 1. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise COBOL
for z/OS Version 5

Compiler
options

Source
information
file type
produced

Is the
program
object
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

TEST(SOURCE) NOLOAD
class in the
object

Yes Supported Supported Supported

NOTEST, LIST,
MAP, SOURCE,
NONUMBER,
XREF(SHORT)

Listing Yes Not
Supported

Not
Supported

Supported

Enterprise COBOL for z/OS Version 4 programs
The following table shows various compiler options that can be used to prepare
Enterprise COBOL for z/OS Version 4 programs for use with the IBM Application
Delivery Foundation for z Systems family of products (IBM Debug for z Systems,
Fault Analyzer for z/OS and Application Performance Analyzer for z/OS). The
methods suggested in the following table indicate whether the load module
produced is suitable for a production environment. Load modules suitable for a
production environment have no significant runtime overhead.

20 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|

|
|

|
|

Table 2. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise COBOL
for z/OS Version 4.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

TEST
(NOHOOK,
SEPARATE,
EJPD), LIST,
MAP, SOURCE,
NONUMBER,
XREF(SHORT)

SYSDEBUG Yes Suggested for production and test

NOTEST, LIST,
MAP, SOURCE,
NONUMBER,
XREF(SHORT)

Compiler
listing

Yes N/A Supported Supported

NOTEST, LIST,
MAP, SOURCE,
NUMBER,
XREF(SHORT)

Yes N/A Supported N/A

LIST, MAP,
SOURCE,
NONUMBER,
XREF(SHORT)

LANGX file Yes Not
supported

Supported Supported

LIST, MAP,
SOURCE,
NONUMBER,
NOTEST,
NOOPT, XREF

LANGX file Yes Supported Supported Supported

Preparing Enterprise COBOL for z/OS Version 4 programs
Perform the following steps for compiling your Enterprise COBOL for z/OS
Version 4 programs using the compiler options suggested in Table 2:
1. Create libraries (PDSE is suggested unless PDS is required in your

organization) for SYSDEBUG files. Create one or more SYSDEBUG libraries for
each environment, such as test, and production.

2. Create a corresponding SYSDEBUG library for each load library. Specify
LRECL=(80 to 1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

3. For all programs in both test and production environments, specify the
following compiler options:
TEST(NOHOOK,SEPARATE,EJPD),LIST,MAP,SOURCE,NONUMBER,XREF(SHORT).
The TEST compiler option is required if you plan to use IBM Debug for z
Systems to debug a program. The TEST option is optional if you plan to use
Fault Analyzer for z/OS or Application Performance Analyzer for z/OS.
The SEPARATE suboption produces a SYSDEBUG file.
NOHOOK and SEPARATE produce a production-ready module that can still be
debugged.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 21

|

|
|

|
|

If the OPT option is also used, EJPD might reduce optimization but enables the
debugger’s JUMPTO and GOTO commands. These commands are disabled when
OPT and NOEJPD are both used.

4. When the TEST option is not used, save the compiler listing in a file, or use the
IPVLANGX utility program to create a LANGX file. To minimize JCL changes,
IPVLANGX has aliases to match names. These are:

IBM Debug for z Systems
EQALANGX

Fault Analyzer for z/OS
IDILANGX

Application Performance Analyzer for z/OS
CAZLANGX

Fault Analyzer for z/OS and Application Performance Analyzer for z/OS can
use compiler listings and LANGX files to provide source-level support.

5. The LIST, MAP, SOURCE, and XREF options are needed only if a compiler listing or
a LANGX file is used to provide source information to Fault Analyzer for z/OS
or Application Performance Analyzer for z/OS. If a SYSDEBUG file is used
with these products or if you are not using Fault Analyzer for z/OS or
Application Performance Analyzer for z/OS, the LIST, MAP, SOURCE, and XREF
options are optional.

6. The NONUMBER compiler option is needed only if a compiler listing file is used to
provide source information to Application Performance Analyzer for z/OS. If a
SYSDEBUG file is used with Application Performance Analyzer for z/OS, or if
you are not using Application Performance Analyzer for z/OS, the NONUMBER
option is optional.

7. Code a SYSDEBUG DD in the JCL of the compiler step:
//SYSDEBUG DD DSN= SYSDEBUG.pds(pgmname),DISP=SHR

Save the SYSDEBUG file that is produced by the compiler in the SYSDEBUG
library and specify a member name that is equal to the program name of your
application program. This file is the source information file for IBM Debug for
z Systems, Fault Analyzer for z/OS and Application Performance Analyzer for
z/OS.

8. Modify the promotion process to promote SYSDEBUG files. When a load
module is promoted, for example from test to production, promote the
corresponding SYSDEBUG file or files. A promotion can be a recompile, copy,
or move. Perform the same steps with the SYSDEBUG file that you perform
with the module during promotion.

9. Optionally, include a zDebug Language Environment® (LE) exit module into
the load module during the linkage editor step. This inclusion is one way to
enable zDebug’s panel 6 in ISPF, a simple panel-driven method to start the
debugger automatically when a program runs, without JCL changes, based on
the program name and user ID. Use module EQADBCXT for batch programs
(including IMS™ batch), EQADICXT for IMS/TM programs and EQADDCXT
for DB2® stored procedures. Do not include the exit module for CICS programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures.

22 PD Tools Common Component Customization Guide and User Guide V1R7

|

|
|

|

|

Sample JCL for compiling Enterprise COBOL for z/OS Version 4
programs
Here is a JCL example for compiling an Enterprise COBOL for z/OS Version 4
program for use with the IBM Application Delivery Foundation for z Systems
family of products. This sample is a generic sample, and might not meet all your
requirements to generate your modules.

Notice that the TEST compiler option is specified. Code the correct suboptions of
the TEST compiler option for the version of the compiler that you are using. You
can also code any other compatible compiler options that are required by your
programs.

Also. notice that a SYSDEBUG DD statement was coded. This statement indicates
the source information file that the compiler produces. It refers to a SYSDEBUG
library that is a PDS or PDSE. The member name must be the same as the program
name.

For Enterprise COBOL for z/OS, these are the only required changes.

However, there is an optional change in the linkage editor step. The example
shows that a special Language Environment exit module is included in the
application load module. Although this is exit module not required, it enables the
use of zDebug panel 6, which makes the debugger easier to start in some
environments. If you prefer to use panel 6 to start zDebug, this method is one way
to enable it. If you do not plan to use zDebug panel 6, then do not include an exit
module.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE COBOL PROGRAM
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A TEST COMPILER PARM IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARM TEST(NOHOOK,SEPARATE,EJPD) HAS ADVANTAGES:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - THE MODULE IS PRODUCTION-READY (NO RUN-TIME OVERHEAD)
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 3. COMPILER PARMS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU PLAN
//* TO USE THE COMPILER LISTING WITH FA OR APA, OR IPVLANGX
//*
//* BINDER (LINKAGE EDITOR):
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, AND DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAM1 PROGRAM NAME
// SET COBOLLIB=’IGY.V4R1.SIGYCOMP’ COBOL COMPILER LOADLIB

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 23

|
|

|
|
|

// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LELIB=’CEE.SCEELKED’ LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
//*
//* ****************************
//* COMPILE STEP
//* ****************************
//COMPILE EXEC PGM=IGYCRCTL,REGION=0M,
// PARM=(’TEST(NOHOOK,SEPARATE,EJPD),LIST,MAP,XREF(SHORT),NONUMBER,SOURCE’)
//STEPLIB DD DISP=SHR,DSN=&COBOLLIB
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM=’LIST,XREF’
//SYSLIB DD DISP=SHR,DSN=&LELIB
//DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT, OR EQAD3CXT)
//* IS OPTIONAL.
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

Enterprise COBOL for z/OS Version 3 and COBOL for OS/390
and VM programs

The following table shows various compiler options that can be used to prepare
Enterprise COBOL for z/OS Version 3 and COBOL for OS/390® and VM programs
for use with the IBM Application Delivery Foundation for z Systems family of
products (IBM Debug for z Systems, Fault Analyzer for z/OS and Application
Performance Analyzer for z/OS). The methods suggested in the following table
indicate whether the load module produced is suitable for a production
environment. Load modules suitable for a production environment have no
significant runtime overhead.

24 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

Table 3. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise COBOL
for z/OS Version 3 and COBOL for OS/390 and VM.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

TEST(NONE,
SYM,
SEPARATE),
LIST, MAP,
SOURCE,
NONUMBER,
XREF(SHORT)

SYSDEBUG Yes Suggested for production and test

NOTEST, LIST,
MAP, SOURCE,
NONUMBER,
NOOPT,
XREF(SHORT)

Compiler
listing

Yes N/A Supported Supported

NOTEST, LIST,
MAP, SOURCE,
XREF(SHORT),
NUMBER

Yes N/A Supported N/A

LIST, MAP,
SOURCE,
NONUMBER,
XREF(SHORT)

LANGX file Yes Not
supported

Supported Supported

LIST, MAP,
SOURCE,
NONUMBER,
NOTEST,
NOOPT, XREF

LANGX file Yes Supported Supported Supported

Preparing Enterprise COBOL for z/OS Version 3 and COBOL for
OS/390 and VM programs
Perform the following steps for compiling your Enterprise COBOL for z/OS
Version 3 and COBOL for OS/390 and VM programs using the compiler options
suggested in Table 3:
1. Create libraries (PDSE is suggested unless PDS is required in your

organization) for SYSDEBUG files. Allocate one or more SYSDEBUG libraries
for each environment, such as test, and production.

2. Create a corresponding SYSDEBUG library for each load library. Specify
LRECL=(80 to 1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

3. For all programs in both test and production environments, use
TEST(NONE,SYM,SEPARATE),LIST,MAP,SOURCE,NONUMBER,XREF(SHORT).
TEST is required by IBM Debug for z Systems.
The SEPARATE suboption produces a SYSDEBUG file. Specifying NONE with
SEPARATE produces a production-ready module that can still be debugged.
If OPTIMIZE is specified, the debugger JUMPTO and GOTO commands are disabled.
These commands are enabled when NOOPTIMIZE is specified.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 25

|

|
|

|

4. The LIST, MAP, SOURCE, and XREF options are needed only if a compiler listing or
a LANGX file is used to provide source information to Fault Analyzer for z/OS
or Application Performance Analyzer for z/OS. If a SYSDEBUG file is used
with these products, or if you are not using Fault Analyzer for z/OS or
Application Performance Analyzer for z/OS, the LIST, MAP, SOURCE, and XREF
options are optional.

5. The NONUMBER compiler option is needed only if a compiler listing file is used to
provide source information to Application Performance Analyzer for z/OS. If a
SYSDEBUG file is used with Application Performance Analyzer for z/OS, or if
you are not using Application Performance Analyzer for z/OS, the NONUMBER
option is optional.

6. Code a SYSDEBUG DD in the JCL of the compiler step.
//SYSDEBUG DD DSN= SYSDEBUG.pds(pgmname),DISP=SHR

Save the SYSDEBUG file that is produced by the compiler in the SYSDEBUG
library and specify a member name that is equal to the program name of your
application program. This file is the source information file for IBM Debug for
z Systems, Fault Analyzer for z/OS and Application Performance Analyzer for
z/OS.

7. Modify the promotion process to promote SYSDEBUG files. When a load
module is promoted, for example from test to production, promote the
corresponding SYSDEBUG file or files. A promotion can be a recompile, copy,
or move. Perform the same steps with the SYSDEBUG file that you perform
with the module during promotion.

8. Optionally, include a zDebug Language Environment exit module into the load
module during the linkage editor step. This inclusion is one way to enable
zDebug’s panel 6 in ISPF, a simple panel-driven method to start the debugger
automatically when a program runs, without JCL changes, based on the
program name and user ID. Use module EQADBCXT for batch programs
(including IMS batch), EQADICXT for IMS/TM programs and EQADDCXT for
DB2 stored procedures. Do not include the exit module for CICS programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures.

Sample JCL for compiling Enterprise COBOL for z/OS Version 3
programs
Here is a JCL example for compiling an Enterprise COBOL for z/OS Version 3
program for use with the IBM Application Delivery Foundation for z Systems
family of products. This example is a generic sample, and might not meet all your
requirements.

Notice that a TEST option is specified. Code the correct suboption of the TEST
compiler option for the version of the compiler that you are using. You can also
code any other compatible compiler options that are required by your programs.

Also, notice that a SYSDEBUG DD statement was coded. This statement indicates
the source information file that the compiler produces. It refers to a SYSDEBUG
library that is a PDS or PDSE. The member name must be the same as the program
name.

For Enterprise COBOL for z/OS, these are the only required changes.

However, there is an optional change in the linkage editor step. The example
shows that a special Language Environment exit module is included in the
application load module. Although this exit module is not required, it enables the

26 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|

|

|
|

use of zDebug panel 6, which makes the debugger easier to start in some
environments. If you prefer to use panel 6 to start zDebug, this method is one way
to enable it. If you do not plan to use zDebug panel 6, then do not include an exit
module.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE COBOL PROGRAM
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A TEST COMPILER PARM IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARM TEST(NONE,SYM,SEP) HAS THREE ADVANTAGES:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - THE MODULE IS PRODUCTION-READY (NO RUN-TIME OVERHEAD)
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 3. COMPILER PARMS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU PLAN
//* TO USE THE COMPILER LISTING WITH FA OR APA, OR IPVLANGX
//* 4. COMPILER PARM NOOPT IS OPTIONAL. HOWEVER, THE DEBUG TOOL
//* COMMANDS JUMPTO AND GOTO WILL NOT BE AVAILABLE IF
//* THE OPT PARM IS USED
//*
//* BINDER (LINKAGE EDITOR):
//* 5. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAM1 PROGRAM NAME
// SET COBOLLIB=’IGY.V3R4.SIGYCOMP’ COBOL COMPILER LOADLIB
// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LELIB=’CEE.SCEELKED’ LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
//*
//* ****************************
//* COMPILE STEP
//* ****************************
//COMPILE EXEC PGM=IGYCRCTL,REGION=0M,
// PARM=(’TEST(NONE,SYM,SEPARATE),LIST,MAP,SOURCE,NONUMBER,XREF(SHORT)’)
//STEPLIB DD DISP=SHR,DSN=&COBOLLIB
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 27

|
|
|

//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM=’LIST,XREF’
//SYSLIB DD DISP=SHR,DSN=&LELIB
//DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL.
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

COBOL for MVS and VM programs
The following table shows various compiler options that can be used to prepare
COBOL for MVS™ and VM programs for use with the IBM Application Delivery
Foundation for z Systems family of products (IBM Debug for z Systems, Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS). The methods
suggested in the following table indicate whether the load module produced is
suitable for a production environment. Load modules suitable for a production
environment have no significant runtime overhead.

Table 4. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for COBOL for MVS
and VM.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

TEST(ALL,
SYM), LIST,
MAP, SOURCE,
NOOPT,
NONUMBER,
XREF(SHORT)

Compiler
listing

No Suggested for test. (Using zDebug in
production for this compiler is not
suggested.)

NOTEST, LIST,
MAP, SOURCE,
NONUMBER,
XREF(SHORT)

Yes N/A Suggested for production

NOTEST, LIST,
MAP, SOURCE,
NONUMBER,
XREF(SHORT)

LANGX file Yes N/A Supported Supported

28 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|

|
|

|

Preparing COBOL for MVS and VM programs
Perform the following steps for compiling your COBOL for MVS and VM
programs:
1. Create libraries (PDSE is suggested unless PDS is required in your

organization) for compiler listing files. Allocate one or more compiler listing
libraries for each environment, such as test and production.

2. Create a corresponding listing library for each load library. Specify
LRECL=133,RECFM=FBA,BLKSIZE=(multiple of lrecl < 32K).

3. For all programs, such as batch, CICS, and IMS:
v In test environments, specify compiler options

TEST(ALL,SYM),NOOPT,LIST,MAP,SOURCE,NONUMBER,XREF(SHORT) to create a
module that can be used with IBM Debug for z Systems, Fault Analyzer for
z/OS and Application Performance Analyzer for z/OS.
TEST is required for IBM Debug for z Systems.
The ALL suboption adds debug hooks, which add some runtime overhead.
SYM stores symbolics data that is required by IBM Debug for z Systems into
the module, which can make it significantly larger.
The other options format the compiler listing as required by IBM Debug for
z Systems, Fault Analyzer for z/OS, and Application Performance Analyzer
for z/OS.

v In production environments, specify compiler options
NOTEST,LIST,MAP,SOURCE,NONUMBER,XREF(SHORT) to create a production-ready
module that can be used with Fault Analyzer for z/OS and Application
Performance Analyzer for z/OS (but not IBM Debug for z Systems). Specify
OPTIMIZE if preferred.
NOTEST disables source level debugging with zDebug, but can provide better
performance and smaller module size.
The other options (except OPTIMIZE) format the compiler listing as required
by Fault Analyzer for z/OS and Application Performance Analyzer for z/OS.

4. Modify the SYSPRINT DD in the JCL of the compiler step to refer to a file.
//SYSPRINT DD DSN= compiler.listing.pds(pgmname),DISP=SHR

Save the compiler listing in a file in the compiler listing library and specify a
member name that is equal to the program name of your application program.
This file is the source information file for IBM Debug for z Systems, Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS.

5. Modify the promotion process to promote compiler listing files. When a load
module is promoted, for example, from test to production, promote the
corresponding compiler listing file or files. A promotion can be a recompile, a
copy, or a move. Perform the same steps with the compiler listing file that you
perform with the module during promotion.

6. Optionally, include a zDebug Language Environment exit module into the load
module during the linkage editor step. This inclusion is one way to enable
zDebug’s panel 6 in ISPF, a simple panel-driven method to start the debugger
automatically when a program runs, without JCL changes, that is based on the
program name and user ID. Use module EQADBCXT for batch programs
(including IMS batch), EQADICXT for IMS/TM programs and EQADDCXT for
DB2 stored procedures. Do not include the exit module for CICS programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 29

|

|

|

|
|

|

|

|

|

|

Sample JCL for compiling COBOL for MVS and VM programs
Here is a JCL example for compiling a COBOL for MVS and VM program for use
with the IBM Application Delivery Foundation for z Systems family of products.
This sample is a generic sample, and might not meet all your requirements.

Notice that a TEST option is specified. Code the correct suboptions of the TEST
compiler option for the version of the compiler that you are using. You can also
code any other compatible compiler options that are required by your programs.

Also, notice that the SYSPRINT DD refers to a permanent file. This file is the
source information file that the compiler produces. It refers to a listing library that
is a PDS or PDSE. The member name must be the same as the program name. For
COBOL for MVS and VM, these are the only required changes.

However, there is an optional change in the linkage editor step. The example
shows that a special Language Environment exit module is included in the
application load module. Although this exit module is not required, it enables the
use of zDebug panel 6, which makes the debugger easier to start in some
environments. If you prefer to use panel 6 to start zDebug, this method is one way
to enable it. If you do not plan to use zDebug panel 6, then do not include an exit
module.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE A COBOL FOR MVS AND VM PROGRAM
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A TEST COMPILER PARM IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARMS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU PLAN
//* TO USE THE COMPILER LISTING WITH FA OR APA, OR IPVLANGX
//* 3. COMPILER PARM NOOPT IS OPTIONAL. HOWEVER, THE DEBUG TOOL
//* COMMANDS JUMPTO AND GOTO WILL NOT BE AVAILABLE IF
//* THE OPT PARM IS USED
//*
//* BINDER (LINKAGE EDITOR):
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAM1 PROGRAM NAME
// SET COBOLLIB=’IGY.SIGYCOMP’ COBOL COMPILER LOADLIB
// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LELIB=’CEE.SCEELKED’ LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
//*
//* ****************************
//* COMPILE STEP
//* ****************************

30 PD Tools Common Component Customization Guide and User Guide V1R7

|

|
|
|

////COMPILE EXEC PGM=IGYCRCTL,REGION=0M,
// PARM=(NOTEST,LIST,MAP,SOURCE,NONUMBER,XREF(SHORT)’)
//STEPLIB DD DISP=SHR,DSN=&COBOLLIB
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM=’LIST,XREF’
//SYSLIB DD DISP=SHR,DSN=&LELIB
//*** DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL.
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

VS COBOL II programs
If you are currently using the TEST option to compile your programs, consider
using NOTEST. Using NOTEST allows you to take advantage of IBM Debug for z
Systems functionality that is not available when compiling with the TEST option.
Examples of IBM Debug for z Systems functions that are available when compiling
with the NOTEST option include the automonitor feature and using AT ENTRY
program name breakpoints. Compiling with NOTEST also allows you to generate a
module that can be debugged but does not incur extra overhead when running
without the debugger.

The following table shows various compiler options that can be used to prepare VS
COBOL II programs for use with the IBM Application Delivery Foundation for z
Systems family of products (IBM Debug for z Systems, Fault Analyzer for z/OS
and Application Performance Analyzer for z/OS). The methods suggested in the
following table indicate whether the load module produced is suitable for a
production environment. Load modules suitable for a production environment
have no significant runtime overhead.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 31

|
|
|

|
|

Table 5. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for VS COBOL II.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

NOTEST, LIST,
MAP, SOURCE,
XREF,
NONUMBER,
NOOFFSET

Compiler
listing

Yes N/A Supported Supported

NOTEST, LIST,
MAP, SOURCE,
XREF, NUMBER

Yes N/A Supported N/A

NOTEST, LIST,
MAP, NOOPT,
SOURCE, XREF,
NONUMBER

LANGX file Yes Suggested for production and test

Preparing VS COBOL II programs
Perform the following steps for compiling your VS COBOL II programs using the
compiler options suggested in Table 5:
1. Allocate libraries (PDSE is suggested unless PDS is required for your

organization) for LANGX files. Allocate one or more LANGX libraries for each
environment, such as test and production.

2. Create a corresponding LANGX library for each load library. Specify
LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k.

3. For all programs, such as batch, CICS, and IMS, in both test and production
environments, compile with NOTEST,LIST,MAP,NOOPT,SOURCE,XREF,NONUMBER
compiler options.

4. Modify the SYSPRINT DD in the compiler step to refer to a file. It can be either
a permanent or temporary file. This file is the input to the IPVLANGX utility.

5. Add a step after the compiler step to run the ADFz IPVLANGX utility. This
utility program reads the compiler listing and generates a LANGX file. This file
is the source information file for IBM Debug for z Systems, Fault Analyzer for
z/OS and Application Performance Analyzer for z/OS. Save the LANGX file in
the LANGX file library and specify a member name that is equal to the
program name of your application program.

6. If the module is linked with Language Environment services, optionally include
a zDebug Language Environment exit module into the load module during the
linkage editor step. This approach is one way to enable the zDebug panel 6 in
ISPF, a simple panel-driven method to start the debugger automatically when a
program runs, without JCL changes, based on the program name and user ID.
Use module EQADBCXT for batch programs (including IMS batch),
EQADICXT for IMS/TM programs and EQADDCXT for DB2 stored
procedures. Do not include the exit module for CICS programs or if the module
is not linked with Language Environment services (it is linked with COBOL II
runtime services).

32 PD Tools Common Component Customization Guide and User Guide V1R7

|

|
|

|

|

|
|

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures.

7. Modify the promotion process to promote LANGX files. When a load module
is promoted, for example, from test to production, promote the corresponding
LANGX file or files. A promotion can be a recompile, copy, or move. Perform
the same steps with the LANGX file that you perform with the module during
promotion.

Sample JCL for compiling VS COBOL II programs
Here is an example of JCL for compiling a VS COBOL II program for use with IBM
Application Delivery Foundation for z Systems family of products. This sample is
a generic sample, and might not meet all your requirements.

Notice the compiler options that are used and notice that the compiler listing is
passed to an added step that generates a LANGX file. The compiler listing can be
stored in a permanent file or can be passed in a temporary file. For VS COBOL II,
these are the only required changes.

However, there is an optional change in the linkage editor step. The example
includes a special Language Environment exit module in the application load
module. Although this exit module is not required, it enables the use of zDebug
panel 6, which makes the debugger easier to start in some environments. If you
prefer to use panel 6 to start zDebug, this inclusion is one way to enable it. If you
do not plan to use zDebug panel 6, then do not include an exit module. Do not
include the exit module for CICS programs or if the module is not linked with
Language Environment services (it is linked with COBOL II runtime services).
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE A VS COBOL II PROGRAM
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. COMPILER OPTIONS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU
//* PLAN TO USE THE LISTING WITH A PD TOOLS PRODUCT, OR TO
//* PROCESS THE LISTING WITH THE IPVLANGX UTILITY
//* 2. COMPILER OPTION NOTEST IS SUGGESTED FOR ALL COBOL II
//* PROGRAMS, EVEN IF IBM DEBUG TOOL FOR Z/OS WILL BE USED
//*
//* BINDER (LINKAGE EDITOR):
//* 3. IN THIS EXAMPLE, THE MODULE IS LINKED WITH LANGUAGE
//* ENVIRONMENT RUNTIME SERVICES. THIS IS CONTROLLED BY THE
//* LIBRARY OR LIBRARIES SPECIFIED IN THE SYSLIB DD IN THE
//* BINDER STEP.
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS, OR FOR
//* PROGRAMS LINKED WITH THE COBOL II RUNTIME SERVICES
//* INSTEAD OF LANGUAGE ENVIRONMENT RUNTIME SERVICES)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 33

|
|

|

|
|

//* SET OPTIONS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAMII1 PROGRAM NAME
// SET COB2COMP=’IGY.V1R4M0.COB2COMP’ COBOL II COMPILER LIB
// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LELKED=’CEE.SCEELKED’ LE LINK LIBRARY
// SET LELIB=’CEE.SCEERUN’ LE RUNTIME LIBRARY
// SET UNITDEV=SYSALLDA TEMP data set UNIT
// SET LANGX=’IPVLANGX’ IPVLANGX UTILITY PROGRAM
// SET LANGXLIB=’IPV.SIPVMODA’ LIB FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* ****************************
//* COMPILE STEP
//* ****************************
//COMPILE EXEC PGM=IGYCRCTL,REGION=4M,
// PARM=(’NOTEST,LIST,MAP,NOOPT,SOURCE,XREF,NONUMBER’,
// ’RES,APOST,LIB,DYNAM,NORENT,NOSSRANGE’)
//STEPLIB DD DISP=SHR,DSN=&COB2COMP
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE A LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM=’(COBOL ERROR 64K CREF’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LELIB
//LISTING DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM=’LIST,XREF’
//SYSLIB DD DISP=SHR,DSN=&LELKED
//DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

34 PD Tools Common Component Customization Guide and User Guide V1R7

OS/VS COBOL programs
The following table shows various compiler options that can be used to prepare
OS/VS COBOL programs for use with the IBM Application Delivery Foundation
for z Systems family of products (IBM Debug for z Systems, Fault Analyzer for
z/OS and Application Performance Analyzer for z/OS). The methods suggested in
the following table indicate whether the load module produced is suitable for a
production environment. Load modules suitable for a production environment
have no significant runtime overhead.

Table 6. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for OS/VS COBOL.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

DMAP,
NOCLIST,
NOLST, PMAP,
SOURCE, VERB,
XREF(SHORT)

Compiler
listing

Yes N/A Supported Supported

(LIST,
NOPMAP) or
(CLIST,
NOPMAP) or
(CLIST, PMAP)

Yes N/A Supported N/A

NOBATCH,
NOCLIST,
NOCOUNT,
DMAP, NOLST,
PMAP, SOURCE,
NOSYMDMP,
NOTEST,
NOOPT, VERB,
XREF(SHORT)

LANGX file Yes Suggested for production and test

Preparing OS/VS COBOL programs
Perform the following steps for compiling your OS/VS COBOL programs:
1. Allocate libraries (PDSE is suggested unless PDS is required for your

organization) for LANGX files. Allocate one or more LANGX libraries for each
environment, such as test and production.

2. Create a corresponding LANGX library for each load library. Specify
LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k.

3. For all programs, such as batch, CICS, and IMS, in both test and production
environments, compile with the NOBATCH, NOCLIST, NOCOUNT, DMAP, NOLST,
PMAP, SOURCE, NOSYMDMP, NOTEST, NOOPT, VERB, XREF(SHORT) compiler options.
The module is production-ready and can be debugged using IBM Debug for z
Systems.

4. Modify the SYSPRINT DD in the compiler step to refer to a file. It can be either
a permanent or temporary file. This is the input to the IPVLANGX utility.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 35

|
|

|

|
|

|
|

5. Add a step after the compiler step to run the ADFz IPVLANGX utility. This
utility program reads the compiler listing and generates a LANGX file, which is
the source information file for IBM Debug for z Systems, Fault Analyzer for
z/OS and Application Performance Analyzer for z/OS. Save the LANGX file in
the LANGX file library, and specify a member name that is equal to the
program name of your application program.

6. Modify the promotion process to promote LANGX files. When a load module
is promoted, for example, from test to production, promote the corresponding
LANGX file or files. A promotion can be a recompile, copy, or move. Perform
the same steps with the LANGX file that you perform with the module during
promotion.

Sample JCL for compiling OS/VS COBOL programs
Here is a JCL example for compiling an OS/VS program for use with the IBM
Application Delivery Foundation for z Systems family of products:
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN OS VS COBOL PROGRAM
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* - COMPILER PARMS DMAP,NOCLIST,NOLST,PMAP,SOURCE,VERB,XREF
//* ARE REQUIRED IF YOU PLAN TO USE THE COMPILER LISTING WITH
//* PD TOOLS AND/OR PROCESS IT WITH IPVLANGX
//*
//* A STEP THAT PROCESSES THE SYSADATA FILE,
//* AND CREATES A LANGX FILE IS NEEDED.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAMOS1 PROGRAM NAME
// SET OSVSCOMP=’IGY.VSCOLIB’ OS VS COBOL COMPILER LIBRARY
// SET LELIB=’CEE.SCEELKED’ LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET SCEERUN=’CEE.SCEERUN’ LANGUAGE ENVIRON SCEERUN LIB
// SET LANGX=’IPVLANGX’ IPVLANGX UTILITY PROGRAM
// SET LANGXLIB=’IPV.SIPVMODA’ LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* ****************************
//* COMPILE STEP
//* ****************************
//COMPILE EXEC PGM=IKFCBL00,REGION=4M,
// PARM=(’DMAP,NOCLIST,NOLST,NOOPT,SOURCE,VERB,XREF(SHORT)’)
//* FOR DT (CHECK DEFAULTS): NOBATCH,NOCOUNT,PMAP,NOSYMDMP,NOTEST
//STEPLIB DD DISP=SHR,DSN=&OSVSCOMP
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.OSVSCOB.LISTING(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*

36 PD Tools Common Component Customization Guide and User Guide V1R7

|

|

|
|

//SYSUT1 DD DSN=&SYSUID..ADLAB.OSVSCOB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM=’(COBOL ERROR 64K CREF’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.OSVSCOB.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM=’LIST,XREF’
//SYSLIB DD DISP=SHR,DSN=&LELIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

Enterprise PL/I Version 3.7 and later programs
The following table shows various compiler options that can be used to prepare
Enterprise PL/I Version 3.7 and later programs for use with the IBM Application
Delivery Foundation for z Systems family of products (IBM Debug for z Systems,
IBM Fault Analyzer for z/OS and IBM Application Performance Analyzer for
z/OS). The methods suggested in the following table indicate whether the load
module produced is suitable for a production environment. Load modules suitable
for a production environment have no significant runtime overhead.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 37

|
|

Table 7. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise PL/I
Version 3.7 and later.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

For Enterprise
PL/I Version 3.7:
TEST(ALL, SYM,
NOHOOK,
SEPARATE,
SEPNAME,
AALL), NOPT,
AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

For Enterprise
PL/I Version 3.8
and later:
TEST(ALL, SYM,
NOHOOK,
SEPARATE,
SEPNAME),
LISTVIEW
(AALL), NOPT,
AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

SYSDEBUG
file used by
IBM Debug
for z
Systems and
Fault
Analyzer for
z/OS.
LANGX file
used by
Application
Performance
Analyzer for
z/OS

Although
the
module is
larger than
a module
compiled
with the
NOTEST
option,
you can
use the
module in
production
if needed.

Suggested for test. You can also use these
options in a production environment if the
increased load module size is not an issue.

38 PD Tools Common Component Customization Guide and User Guide V1R7

|

|
|

|
|
|

Table 7. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise PL/I
Version 3.7 and later (continued).

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST, NOTEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

Compiler
listing

Yes N/A Supported N/A

LANGX file Yes N/A Suggested for production and
test

Preparing Enterprise PL/I Version 3.7 and later programs
Perform the following steps for compiling your Enterprise PL/I Version 3.7 and
later programs:
1. Create a library (PDSE is suggested unless PDS is required for your

organization) for SYSDEBUG files. This library is only needed in test
environments where debugging is performed using LRECL=(80 to
1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

2. Allocate one or more LANGX libraries for each environment, such as test and
production.

3. Create a corresponding LANGX library for each load library. Specify
LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k.

4. For all programs, such as batch, CICS, and IMS:
v In test environments:

– When using the Enterprise PL/I Version 3.7 compiler:
For all programs, specify the following compiler options:
TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME,AALL), NOPT, AGGREGATE,
ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET,
OPTIONS, SOURCE, STMT, XREF(FULL).

– When using the Enterprise PL/I Version 3.8 and later compilers:
For all programs, specify the following compiler options:
TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME), LISTVIEW(AALL), NOPT,
AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER,
OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).

TEST(...) and NOPT are required by zDebug.
The SEPARATE suboption produces a SYSDEBUG file. Save the SYSDEBUG
file that is created by the compiler for IBM Debug for z Systems and
optionally, IBM Fault Analyzer for z/OS.
The AALL (AFTERALL) suboption of TEST or LISTVIEW stores program source
information in the SYSDEBUG file that contains information after the last

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 39

|

|
|

|

|

preprocessor, such as macros and INCLUDEs. This expanded source
information is available in the source window of IBM Debug for z Systems
while debugging.
The other options format the compiler listing as required for the
IPVLANGX utility.
Consider using the TEST(ALL,NOHOOK,SEPARATE) options for best
performance and to produce a module that can be debugged. Depending on
the policies in your organization, the module can be considered for
production.

v In production environments:
– When using the Enterprise PL/I Version 3.7 or later compiler:

For all programs, specify NOTEST, AGGREGATE, ATTRIBUTES(FULL),
NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET, OPTIONS, SOURCE,
STMT, XREF(FULL).

NOTEST disables zDebug, but produces a smaller load module.
The other options format the compiler listing as required for the
IPVLANGX utility to produce a production-ready module that can be used
with IBM Fault Analyzer for z/OS and IBM Application Performance
Analyzer for z/OS (but not IBM Debug for z Systems).

5.

When a TEST(...SEPARATE) option is used, code a SYSDEBUG DD in the
second compiler step as follows:
//SYSDEBUG DD DSN= sysdebug.pds(pgmname),DISP=SHR

This is the source information file for IBM Debug for z Systems, and
optionally, IBM Fault Analyzer for z/OS. Save it in the SYSDEBUG library,
and specify a member name that is equal to the primary entry point name or
CSECT name of your application program.

6. Modify the SYSPRINT DD in the compiler step. This file is the compiler
listing. Write the listing to either a permanent or temporary file. This file is the
input to the IPVLANGX utility.

Note: This compiler typically renames CSECTs according to an internal
compiler algorithm. Therefore, it is not recommended to store PL/I compiler
listings or side files using CSECT names as they might not be found by IBM
Application Performance Analyzer for z/OS or IBM Fault Analyzer for z/OS.
Instead, use the primary entry point name.

7. Add a step after the compile step to run the IPVLANGX utility. This utility
reads the compiler listing and generates a LANGX file. This file is the source
information file for IBM Fault Analyzer for z/OS and IBM Application
Performance Analyzer for z/OS. Save the LANGX file in the LANGX file
library, and specify a member name that is equal to the primary entry point
name of your application program.

8. Modify the promotion process to promote LANGX files. When a load module
is promoted, for example, from test to production, promote the corresponding
LANGX file or files. A promotion can be a recompile, copy, or move. Perform
the same steps with the LANGX file that you perform with the module during
promotion.

9. If you compile with the TEST option and promote these modules into
production, promote the SYSDEBUG file for your production environment.

10. Optionally, include a zDebug Language Environment exit module into the
load module during the linkage editor step. This approach is one way to

40 PD Tools Common Component Customization Guide and User Guide V1R7

|

|

|

|

|

enable zDebug’s panel 6 in ISPF, a simple panel-driven method to start the
debugger automatically when a program runs, without JCL changes, based on
the program name and user ID. Use module EQADBCXT for batch programs
(including IMS batch), EQADICXT for IMS/TM programs and EQADDCXT
for DB2 stored procedures. Do not include the exit module for CICS
programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures

Sample JCL for compiling Enterprise PL/I for z/OS Version 3.7 or
later programs
Here is a JCL example for compiling an Enterprise PL/I for z/OS Version 3.7 or
later program for use with the IBM Application Delivery Foundation for z Systems
family of products.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE PL/I V3.7 OR LATER
//* PROGRAM FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. COMPILER PARMS TEST IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARM NOPT IS RECOMMENDED FOR DEBUG TOOL
//* 3. COMPILER PARM:
//* TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME,AALL) (V3.7)
//* TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME),LISTVIEW(AALL), (V3.8+)
//* IS USED BECAUSE:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - NOHOOK DOES NOT HAVE RUN-TIME CPU OVERHEAD. HOWEVER, THE
//* MODULE IS LARGER BECAUSE OF STATEMENT TABLE
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 4. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),NOBLKOFF,LIST,
//* MAP,NEST,NONUMBER,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* TO PROCESS THE COMPILER LISTING WITH IPVLANGX
//*
//* BINDER (LINKAGE EDITOR):
//* 5. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=PADSTAT PROGRAM NAME
// SET PLICOMP=’IBMZ.V3R7.SIBMZCMP’ PLI COMPILER LOADLIB
// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LEHLQ=’CEE’ LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX=’IPVLANGX’ IPVLANGX UTILITY PROGRAM
// SET LANGXLIB=’IPV.SIPVMODA’ LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED
//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 41

|

|
|

// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//*
//* ***************************************
//* COMPILE STEP
//* ***************************************
//COMPILE EXEC PGM=IBMZPLI,REGION=0M,
// PARM=(’+DD:OPTIONS’)
//* THE +DD:OPTIONS PARAMETER IS USED TO DIRECT THE COMPILER TO
//* GET THE COMPILATION OPTIONS FROM THE OPTIONS DD STATEMENT
//OPTIONS DD *
TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME,AALL),LIST,MAP,SOURCE,
XREF(FULL),NOBLKOFF,AGGREGATE,ATTRIBUTES(FULL),NEST,OPTIONS,NOPT,
STMT,NONUMBER,OFFSET
/*
//* Note: The above options are for Enterprise PL/I Version 3.7
//* For Enterprise PL/I Version 3.8+, change the TEST option
//* to TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME), and add the
//* LISTVIEW(AALL) option
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSUT1 DD SPACE=(CYL,(5,2),,CONTIG),DCB=BLKSIZE=1024,UNIT=&UNITDEV
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM=’(PLI ERROR 64K CREF’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//*
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

Enterprise PL/I Version 3.5 and Version 3.6 programs
The following table shows various compiler options that can be used to prepare
Enterprise PL/I Version 3.5 and Version 3.6 programs for use with the IBM
Application Delivery Foundation for z Systems family of products (IBM Debug for
z Systems, IBM Fault Analyzer for z/OS and IBM Application Performance

42 PD Tools Common Component Customization Guide and User Guide V1R7

|
|
|

Analyzer for z/OS). The methods suggested in the following table indicate
whether the load module produced is suitable for a production environment. Load
modules suitable for a production environment have no significant runtime
overhead.

Table 8. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise PL/I
Version 3.5 and Version 3.6.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

Preprocess (1st
stage) to expand
source, In
compile (2nd
stage):

For Enterprise
PL/I Version 3.5:
TEST(ALL, SYM,
NOHOOK,
SEPARATE),
NOPT,
AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

For Enterprise
PL/I Version 3.6:
TEST(ALL, SYM,
NOHOOK,
SEPARATE,
SEPNAME),
NOPT,
AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

SYSDEBUG
file used by
IBM Debug
for z
Systems and
Fault
Analyzer for
z/OS.
LANGX file
used by
Application
Performance
Analyzer for
z/OS

Although
the
module is
larger than
a module
compiled
with the
NOTEST
option,
you can
use the
module in
production
if needed.

Suggested for test. You can also use these
options in a production environment if the
increased load module size is not an issue.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 43

|

|
|

|
|
|

Table 8. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise PL/I
Version 3.5 and Version 3.6 (continued).

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST, NOTEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

Compiler
listing

Yes N/A Supported N/A

LANGX file Yes N/A Suggested for production and
test

Preparing Enterprise PL/I Version 3.5 and Version 3.6 programs
Perform the following steps for compiling your Enterprise PL/I Version 3.5 and
Version 3.6 programs:
1. Create a library (PDSE is suggested unless PDS is required for your

organization) for SYSDEBUG files. This library is only needed in test
environments where debugging is performed using LRECL=(80 to
1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

2. Allocate one or more LANGX libraries for each environment, such as test and
production.

3. Create a corresponding LANGX library for each load library. Specify
LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k.

4. Run a two-stage compile. The first stage preprocesses the program, so the IBM
Application Delivery Foundation for z Systems family of products have access
to fully expanded source code with INCLUDEs and macros. The second stage
compiles the program. For all programs, such as batch, CICS, and IMS:
v In the first compile stage, in both test and production environments, specify

compiler options MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE to expand
INCLUDEs and macros. The output SYSPUNCH DD is the input SYSIN DD
to the second compile stage.

v In the second compile stage, in test environments,
– When using the Enterprise PL/I Version 3.5 compiler:

For all programs, specify the following compiler options:
TEST(ALL,SYM,NOHOOK,SEPARATE), NOPT, AGGREGATE, ATTRIBUTES(FULL),
NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET, OPTIONS, SOURCE,
STMT, XREF(FULL).

– When using the Enterprise PL/I Version 3.6 compiler:
For all programs, specify the following compiler options:
TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME), NOPT, AGGREGATE,
ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET,
OPTIONS, SOURCE, STMT, XREF(FULL).

44 PD Tools Common Component Customization Guide and User Guide V1R7

|

|
|

|
|

TEST(...) and NOPT are required by zDebug.
The SEPARATE suboption produces a SYSDEBUG file. Save the SYSDEBUG
file that is created by the compiler for zDebug (and optionally, Fault
Analyzer).
The other options format the compiler listing as required for the
IPVLANGX utility.
Consider using TEST(ALL,SYM,NOHOOK,SEPARATE) for best performance and to
produce a module that can be debugged. Depending on the policies in your
organization, the module can be considered for production.

v In the second compile stage, in production environments, specify compiler
options NOTEST, AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP,
NEST, NONUMBER, OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).

Note: The above options can be used with both the Enterprise PL/I Version
3.5 and Version 3.6 compilers.

NOTEST disables zDebug, but produces a smaller load module.
The other options format the compiler listing as required for the IPVLANGX
utility to produce a production-ready module that can be used with Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS (but not
IBM Debug for z Systems).

5.

When a TEST(...SEPARATE) parm is used, code a SYSDEBUG DD in the
second compiler step as follows:
//SYSDEBUG DD DSN= sysdebug.pds(pgmname),DISP=SHR

This is the source information file for IBM Debug for z Systems, IBM
Application Performance Analyzer for z/OS and optionally, IBM Fault
Analyzer for z/OS. Save it in the SYSDEBUG library, and specify a member
name that is equal to the primary entry point name or CSECT name of your
application program.

6. Modify the SYSPRINT DD in the second compiler stage. This file is the
compiler listing. Write the listing to either a permanent or temporary file. This
file is the input to the IPVLANGX utility.

Note: This compiler typically renames CSECTs according to an internal
compiler algorithm. Therefore, it is not recommended to store PL/I compiler
listings or side files using CSECT names as they might not be found by IBM
Application Performance Analyzer for z/OS or IBM Fault Analyzer for z/OS.
Instead, use the primary entry point name.

7. Add a step after the compile step to run the IPVLANGX utility. This utility
reads the compiler listing and generates a LANGX file. This file is the source
information file for IBM Fault Analyzer for z/OS and IBM Application
Performance Analyzer for z/OS. Save the LANGX file in the LANGX file
library, and specify a member name that is equal to the primary entry point
name of your application program.

8. Modify the promotion process to promote LANGX files. When a load module
is promoted, for example, from test to production, promote the corresponding
LANGX file or files. A promotion can be a recompile, copy, or move. Perform
the same steps with the LANGX file that you perform with the module during
promotion.

9. If you compile with the TEST option and promote these modules into
production, promote the SYSDEBUG file for your production environment.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 45

|

|

|

|

|

10. Optionally, include a zDebug Language Environment exit module into the
load module during the linkage editor step. This approach is one way to
enable zDebug’s panel 6 in ISPF, a simple panel-driven method to start the
debugger automatically when a program runs, without JCL changes, based on
the program name and user ID. Use module EQADBCXT for batch programs
(including IMS batch), EQADICXT for IMS/TM programs and EQADDCXT
for DB2 stored procedures. Do not include the exit module for CICS
programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures

Sample JCL for compiling Enterprise PL/I Version 3.5 or Version
3.6 programs
Here is a JCL example for compiling an Enterprise PL/I for z/OS Version 3.5 or
Version 3.6 program for use with the IBM Problem Determination Tools products.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE PL/I V3.5 OR
//* ENTERPRISE PL/I V3.6 PROGRAM FOR THE IBM ZSERIES
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM, SO THAT
//* THE SYSDEBUG FILE CREATED IN STAGE 2 (COMPILE) HAS ALL STMTS.
//* 2. COMPILER PARMS TEST AND NOPT ARE REQUIRED FOR DEBUG TOOL
//* 3. COMPILER PARM TEST(ALL,SYM,NOHOOK,SEP) (V3.5) OR
//* TEST(ALL,SYM,NOHOOK,SEP,SEPNAME) (V3.6) IS USED BECAUSE:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - NOHOOK DOES NOT HAVE RUN-TIME CPU OVERHEAD. HOWEVER, THE
//* MODULE IS LARGER BECAUSE OF STATEMENT TABLE
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 4. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),NOBLKOFF,LIST,
//* MAP,NEST,NONUMBER,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* TO PROCESS THE COMPILER LISTING WITH IPVLANGX
//*
//* BINDER (LINKAGE EDITOR):
//* 5. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=PADSTAT PROGRAM NAME
// SET PLICOMP=’IBMZ.V3R5.SIBMZCMP’ PLI COMPILER LOADLIB
// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LEHLQ=’CEE’ LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX=’IPVLANGX’ IPVLANGX UTILITY PROGRAM
// SET LANGXLIB=’IPV.SIPVMODA’ LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED

46 PD Tools Common Component Customization Guide and User Guide V1R7

|

|

//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//* ***************************************
//* PREPROCESS STEP (COMPILE STAGE 1)
//* ***************************************
//PRECOMP EXEC PGM=IBMZPLI,REGION=0M,
// PARM=(’MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE’)
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024,
// UNIT=&UNITDEV
//SYSPUNCH DD DISP=(MOD,PASS),DSN=&&SRC1,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//*
//* ***************************************
//* COMPILE STEP (COMPILE STAGE 2)
//* ***************************************
//COMPILE EXEC PGM=IBMZPLI,REGION=0M,
// PARM=(’+DD:OPTIONS’)
//* THE +DD:OPTIONS PARAMETER IS USED TO DIRECT THE COMPILER TO
//* GET THE COMPILATION OPTIONS FROM THE OPTIONS DD STATEMENT
//OPTIONS DD *
TEST(ALL,SYM,NOHOOK,SEPARATE),LIST,MAP,SOURCE,XREF(FULL),
NOBLKOFF,AGGREGATE,ATTRIBUTES(FULL),NEST,OPTIONS,NOPT,
STMT,NONUMBER,OFFSET
/*
//* Note: The above options are for Enterprise PL/I Version 3.5
//* For Enterprise PL/I Version 3.6, change the TEST option
//* to: TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME)
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DSN=&&SRC1,DISP=(OLD,PASS)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSUT1 DD SPACE=(CYL,(5,2),,CONTIG),DCB=BLKSIZE=1024,UNIT=&UNITDEV
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM=’(PLI ERROR 64K CREF’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 47

//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

Enterprise PL/I Version 3.4 and earlier programs
The following table shows various compiler options that can be used to prepare
Enterprise PL/I Version 3.4 and earlier programs for use with the IBM Application
Delivery Foundation for z Systems family of products (IBM Debug for z Systems,
Fault Analyzer for z/OS and Application Performance Analyzer for z/OS). The
methods suggested in the following table indicate whether the load module
produced is suitable for a production environment. Load modules suitable for a
production environment have no significant runtime overhead.

Table 9. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Enterprise PL/I
Version 3.4 and earlier.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

Preprocess (1st
stage) to expand
source, In
compile (2nd
stage):
TEST(ALL),
NOPT,
AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL))

Expanded
source file
used by IBM
Debug for z
Systems,
LANGX file
used by
Fault
Analyzer for
z/OS and
Application
Performance
Analyzer for
z/OS

No Suggested for test. (Using zDebug in
production for this compiler is not
recommended.)

AGGREGATE,
ATTRIBUTES
(FULL),
NOBLKOFF,
LIST, MAP,
NEST, NOTEST,
NONUMBER,
OFFSET,
OPTIONS,
SOURCE, STMT,
XREF(FULL))

Compiler
listing

Yes N/A Supported N/A

LANGX file Yes N/A Suggested for production and
test

48 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|

|
|

|
|
|

|

Preparing Enterprise PL/I Version 3.4 and earlier programs
Perform the following steps for compiling your Enterprise PL/I Version 3.4 and
earlier programs:
1. Create a library (PDSE is suggested unless PDS is required for your

organization) for expanded source files. This library is only needed in test
environments where debugging is performed. The library can be any RECFM /
LRECL / BLKSIZE supported as input by the compiler.

2. Allocate libraries (PDSE is suggested unless PDS is required for your
organization) for LANGX files. Allocate one or more LANGX libraries for each
environment, such as test or production.

3. Create a corresponding LANGX library for each load library. Specify
LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k.

4. Run a 2–stage compile. The first stage preprocesses the program, so the IBM
Application Delivery Foundation for z Systems family of products have access
to fully expanded source code with INCLUDEs and macros. The second stage
compiles the program.
v In the first compile stage, in both test and production environments:

– Specify compiler options MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE to
expand INCLUDEs and macros.

– Save the output, the expanded source file, in a permanent file in the
expanded source file library and specify member name = program name. This
file is the source information file for IBM Debug for z Systems. The output
SYSPUNCH DD is the input SYSIN DD to the second compiler stage.

v In the second compile stage, for all programs, such as batch, CICS, and IMS:
– In test environments, specify compiler options TEST(ALL), NOPT,

AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER,
OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).
TEST(ALL) and NOPT are required by zDebug. Debug hooks are inserted,
which add some runtime overhead. Symbolic data that is required by
zDebug is also stored in the module, which can make it larger.
The other options format the compiler listing as required for the
IPVLANGX utility.

– In production environments, specify compiler options NOTEST, AGGREGATE,
ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET,
OPTIONS, SOURCE, STMT, XREF(FULL)).
NOTEST disables DzDebug, but provides the best performance. This
produces a production-ready module that can be used with Fault Analyzer
for z/OS and Application Performance Analyzer for z/OS (but not
zDebug).
The other options format the compiler listing as required for the
IPVLANGX utility.

5. Modify the SYSPRINT DD in the second compiler stage. This file is the
compiler listing. Save the compiler listing to either a permanent or temporary
file. This file is the input to the IPVLANGX utility.

Note: This compiler typically renames CSECTs according to an internal
compiler algorithm. Therefore, it is not recommended to store PL/I compiler
listings or side files using CSECT names as they might not be found by
Application Performance Analyzer for z/OS or Fault Analyzer for z/OS.
Instead, use the primary entry point name.

6. Add a step after the compiler step to run the IPVLANGX utility. The
IPVLANGX utility reads the compiler listing and generates a LANGX file,

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 49

|
|

|

|

|

|

|

which is the source information file for Fault Analyzer for z/OS and
Application Performance Analyzer for z/OS. Save the LANGX file in the
LANGX file library, and specify a member name that is equal to the primary
entry point name or CSECT name of your application program.

7. Modify the promotion process to promote LANGX files. When a load module
is promoted, for example, from test to production, promote the corresponding
LANGX file or files. A promotion can be a recompile, copy, or move. Perform
the same steps with the LANGX file that you perform with the module during
promotion.

8. Optionally, include a zDebug Language Environment exit module into the load
module during the linkage editor step. This approach is one way to enable
zDebug’s panel 6 in ISPF, a simple panel-driven method to start the debugger
automatically when a program runs, without JCL changes, based on the
program name and user ID. Use module EQADBCXT for batch programs
(including IMS batch), EQADICXT for IMS/TM programs and EQADDCXT for
DB2 stored procedures. Do not include the exit module for CICS programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures

9. For CICS applications only, if the zDebug DTCN transaction is used to start
zDebug, link edit the zDebug CICS startup exit module EQADCCXT into the
application load module to enable zDebug in CICS. This link edit is not needed
if using the CADP transaction instead of DTCN.

Sample JCL for compiling Enterprise PL/I for z/OS Version 3.4 or
earlier programs
Here is a JCL example for compiling an Enterprise PL/I for z/OS Version 3.4 or
earlier program for use with the IBM Application Delivery Foundation for z
Systems family of products.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO COMPILE WITH ENTERPRISE PLI V3.4 AND PREVIOUS
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM, SO THAT
//* A SOURCE FILE IS CREATED FOR DEBUG TOOL THAT HAS ALL STMTS.
//* 2. COMPILER PARM TEST AND NOPT ARE REQUIRED FOR DEBUG TOOL
//* 3. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),NOBLKOFF,LIST,
//* MAP,NEST,NONUMBER,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* TO PROCESS THE COMPILER LISTING WITH IPVLANGX
//*
//* BINDER (LINKAGE EDITOR):
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:

50 PD Tools Common Component Customization Guide and User Guide V1R7

|

|

|
|
|

|
|

//* ---------------------------
// SET MEM=PTEST PROGRAM NAME
// SET PLICOMP=’IBMZ.V3R4.SIBMZCMP’ PLI COMPILER LOADLIB
// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LEHLQ=’CEE’ LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX=’IPVLANGX’ IPVLANGX UTILITY PROGRAM
// SET LANGXLIB=’IPV.SIPVMODA’ LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED
//XSOURCE DD DSN=&SYSUID..ADLAB.EXPANDED.SOURCE,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//* ***************************************
//* PREPROCESS STEP (COMPILE STAGE 1)
//* ***************************************
//PRECOMP EXEC PGM=IBMZPLI,REGION=0M,
// PARM=(’MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE’)
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024,
// UNIT=&UNITDEV
//SYSPUNCH DD DISP=SHR,DSN=&SYSUID..ADLAB.EXPANDED.SOURCE(&MEM)
//*
//* ***************************************
//* COMPILE STEP (COMPILE STAGE 2)
//* ***************************************
//COMPILE EXEC PGM=IBMZPLI,REGION=0M,
// PARM=(’+DD:OPTIONS’)
//* THE +DD:OPTIONS PARAMETER IS USED TO DIRECT THE COMPILER TO
//* GET THE COMPILATION OPTIONS FROM THE OPTIONS DD STATEMENT
//OPTIONS DD *
TEST(ALL),LIST,MAP,SOURCE,XREF(FULL),
NOBLKOFF,AGGREGATE,ATTRIBUTES(FULL),NEST,OPTIONS,NOPT,
STMT,NONUMBER,OFFSET
/*
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.EXPANDED.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM)
//SYSUT1 DD SPACE=(CYL,(5,2),,CONTIG),DCB=BLKSIZE=1024,UNIT=&UNITDEV
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM=’(PLI ERROR 64K CREF’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 51

//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

PL/I for MVS and VM and OS PL/I programs
The following table shows various compiler options that can be used to prepare
PL/I for MVS and VM and OS PL/I programs for use with the IBM Application
Delivery Foundation for z Systems family of products (IBM Debug for z Systems,
Fault Analyzer for z/OS and Application Performance Analyzer for z/OS). The
methods suggested in the following table indicate whether the load module
produced is suitable for a production environment. Load modules suitable for a
production environment have no significant runtime overhead.

For the test environment, you need both the listing and the LANGX file (for Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS). In
production, only the LANGX file is suggested.

Table 10. Examples of compiler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for PL/I for MVS and
VM and OS PLI.

Compiler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and suggested
for IBM
Debug for z
Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

TEST(ALL),
AGGREGATE,
ATTRIBUTES
(FULL), ESD,
LIST, MAP,
NEST, NOPT,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

Compiler
listing

No Suggested for
test. Using
z/OS
Debugger in
production for
this compiler
is not
recommended.

Supported Supported

LANGX file No N/A Supported N/A

NOTEST,
AGGREGATE,
ATTRIBUTES
(FULL), ESD,
LIST, MAP,
NEST,
OPTIONS,
SOURCE, STMT,
XREF(FULL)

Compiler
listing

Yes N/A Supported Suggested for
production
and test

LANGX file Yes N/A Suggested for
production
and test

N/A

52 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|

|
|
|

|
|

Perform the following steps for compiling your PL/I for MVS and VM and OS
PL/I programs:
1. Create a library (PDSE is suggested unless PDS is required for your

organization) for compiler listing files. This library is only needed in test
environments where debugging is performed. Specify LRECL=125
minimum,RECFM=VBA,BLKSIZE= lrecl+4 to 32k.

2. Allocate libraries (PDSE is suggested unless PDS is required for your
organization) for LANGX files. Allocate one or more LANGX libraries for each
environment, such as test and production.

3. Create a corresponding LANGX library for each load library. Specify
LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k.

4. For all programs, such as batch, CICS, and IMS:
v In test environments, specify compiler options TEST(ALL), NOPT, AGGREGATE,

ATTRIBUTES(FULL), ESD, LIST, MAP, NEST, OPTIONS, SOURCE, STMT,
XREF(FULL).
TEST(ALL) and NOOPT are required by zDebug. TEST adds debug hooks, which
add some runtime overhead. Symbolic data that is required by zDebug is
stored in the module, which can make it larger.
The other options format the compiler listing as required by zDebug and by
the IPVLANGX utility.

v In production environments, specify compiler options NOTEST, AGGREGATE,
ATTRIBUTES(FULL), ESD, LIST, MAP, NEST, OPTIONS, SOURCE, STMT,
XREF(FULL).
NOTEST disables zDebug, but provides the best performance.
The other options format the compiler listing as required for the IPVLANGX
utility.
This produces a production-ready module that can be used with Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS but not
IBM Debug for z Systems.

5. Modify the SYSPRINT DD in the compiler step. This parameter is the compiler
listing. Save this to a permanent file. The compiler listing is the input to the
IPVLANGX utility and is the source information file for IBM Debug for z
Systems.

Note: This compiler typically renames CSECTs according to an internal
compiler algorithm. Therefore, it is not recommended to store PL/I compiler
listings or side files using CSECT names as they might not be found by
Application Performance Analyzer for z/OS or Fault Analyzer for z/OS.
Instead, use the primary entry point name.

6. Add a step after the compiler step to run the IPVLANGX utility. This utility
reads the compiler listing and saves a LANGX file. This file is the source
information file for Fault Analyzer for z/OS and Application Performance
Analyzer for z/OS. Save it in the LANGX file library and specify a member
name that is equal to the primary entry point name of your application
program.

7. Modify the promotion process to promote LANGX files. When a load module
is promoted, for example, from test to production, promote the corresponding
LANGX file or files. A promotion can be a recompile, copy, or move. Perform
the same steps with the LANGX file that you perform with the module during
promotion.

8. Optionally, include a zDebug Language Environment exit module into the load
module during the linkage editor step. This approach is one way to enable

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 53

|
|

|

|

|

|
|

|

zDebug’s panel 6 in ISPF, a simple panel-driven method to start the debugger
automatically when a program runs, without JCL changes, based on the
program name and user ID. Use module EQADBCXT for batch programs
(including IMS batch), EQADICXT for IMS/TM programs and EQADDCXT for
DB2 stored procedures. Do not include the exit module for CICS programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures

9. For CICS applications only, if the zDebug DTCN transaction is used to start
zDebug, link edit the zDebug CICS startup exit module EQADCCXT into the
application load module to enable zDebug in CICS. This link edit is not needed
if using the CADP transaction instead of DTCN.

Preparing PL/I for MVS and VM and OS PL/I programs

Sample JCL for compiling PL/I for MVS and VM programs
Here is a JCL example for compiling an PL/I for MVS and VM program for use
with the IBM Application Delivery Foundation for z Systems family of products.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE A PLI FOR MVS AND VM PROGRAM
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. COMPILER PARM TEST IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),ESD,LIST,
//* MAP,NEST,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* FOR PD TOOLS TO PROCESS THE COMPILER LISTING
//*
//* BINDER (LINKAGE EDITOR):
//* 3. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=PADSTAT PROGRAM NAME
// SET PLICOMP=’IEL.V1R1M1.SIELCOMP’ PLI COMPILER LOADLIB
// SET DTLIB=’EQAW.SEQAMOD’ DEBUG TOOL LOADLIB
// SET LEHLQ=’CEE’ LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX=’IPVLANGX’ IPVLANGX UTILITY PROGRAM
// SET LANGXLIB=’IPV.SIPVMODA’ LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED
//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//*
//* ***************************************
//* COMPILE STEP
//* ***************************************
//*

54 PD Tools Common Component Customization Guide and User Guide V1R7

|

|
|
|

|

//COMPILE EXEC PGM=IEL1AA,REGION=6M,
// PARM=(’TEST(ALL),NOPT,AGGREGATE,ATTRIBUTES(FULL),ESD,LIST,MAP,’,
// ’NEST,OPTIONS,SOURCE,STMT,XREF(FULL)’)
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.PLIMVS.LISTING(&MEM)
//SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.PLIMVS.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM=’(PLI ERROR 64K CREF’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.PLIMVS.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

z/OS XL C and C++ programs
The following table shows various compiler options that can be used to prepare
z/OS XL C and C++ programs for use with the IBM Application Delivery
Foundation for z Systems family of products (IBM Debug for z Systems, Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS). The methods
suggested in the following table indicate whether the load module produced is
suitable for a production environment. Load modules suitable for a production
environment have no significant runtime overhead.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 55

|
|

Table 11. Examples of compiler options and source information files that are supported by IBM Application Delivery
Foundation for z Systems family of products for C and C++.

Compiler options Output produced

Options supported
and suggested for
IBM Debug for z
Systems

Options supported
and suggested for
Fault Analyzer for
z/OS

Options supported
and suggested for
Application
Performance
Analyzer for z/OS

Preprocess (1st stage) to
expand source:
PP(COMMENTS,
NOLINES)

Compile (2nd stage):
DEBUG (FORMAT
(DWARF), NOHOOK,
SYMBOL, FILE
(location)), LIST,
LONGNAME,
NOOFFSET 1

v Expanded source
file

v DWARF file (used
by IBM Debug for
z Systems and
Fault Analyzer for
z/OS)

v Compiler listing
(used by
Application
Performance
Analyzer for z/OS)

Supported. You can
use it for production
if the OPT compile
option is not used.
Full functionality
available.

Supported. Use of
the OPT compile
option might result
in incorrect source
line being reported.
Full functionality
available.

Supported.

v .mdbg file2 Recommended. You
can use it for
production if the
OPT compile option
is not used. Full
functionality
available.

Supported. Use of
the OPT compile
option might result
in incorrect source
line being reported.
Full functionality
available.

Not supported.

Preprocess (1st stage) to
expand source:
PP(COMMENTS,
NOLINES)

Compile (2nd stage):
DEBUG (FORMAT
(DWARF), HOOK (LINE,
NOBLOCK, PATH),
SYMBOL, FILE
(location)), LIST,
LONGNAME, NOOPT,
NOOFFSET 1

v Expanded source
file

v DWARF file (used
by IBM Debug for
z Systems and
Fault Analyzer for
z/OS)

v Compiler listing
(used by
Application
Performance
Analyzer for z/OS)

Supported. Full
functionality
available. Use in
production not
recommended.

Supported. Full
functionality
available.

Supported.

v .mdbg file2 Supported. Full
functionality
available. Use in
production not
recommended.

Supported. Full
functionality
available.

Not supported.

56 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|
|

|
|

|
|

Table 11. Examples of compiler options and source information files that are supported by IBM Application Delivery
Foundation for z Systems family of products for C and C++ (continued).

Compiler options Output produced

Options supported
and suggested for
IBM Debug for z
Systems

Options supported
and suggested for
Fault Analyzer for
z/OS

Options supported
and suggested for
Application
Performance
Analyzer for z/OS

Preprocess (1st stage) to
expand source:
PP(COMMENTS,
NOLINES)

Compile (2nd stage):
TEST, AGGREGATE3,
NOIPA, LIST, NESTINC
(255), NOOFFSET,
NOOPT, SOURCE, XREF,
LONGNAME

v Expanded source
file (used by IBM
Debug for z
Systems)

v Compiler listing
(used by Fault
Analyzer for z/OS
and Application
Performance
Analyzer for z/OS)

Supported. Use in
production not
recommended.

Supported. Use in
production not
recommended.
Variables not
reported.

Supported. Use in
production not
recommended.

v Expanded source
file (used by IBM
Debug for z
Systems)

v LANGX file (used
by Fault Analyzer
for z/OS and
Application
Performance
Analyzer for z/OS)

Supported. Use in
production not
recommended.

Supported. Use in
production not
recommended.
Variables not
reported.

Supported. Use in
production not
recommended.

NOTEST, AGGREGATE3,
NOIPA, LIST, NESTINC
(255), NOOFFSET,
NOOPT, SOURCE, XREF,
LONGNAME

v Compiler listing
(used by Fault
Analyzer for z/OS
and Application
Performance
Analyzer for z/OS)

Not supported. Supported.
Suggested for
production and test.
Variables not
reported.

Supported.
Suggested for
production and test.

v LANGX file (used
by Fault Analyzer
for z/OS and
Application
Performance
Analyzer for z/OS)

Not supported. Supported.
Suggested for
production and test.
Variables not
reported.

Supported.
Suggested for
production and test.

UNIX System Services
compile -g

v DWARF file (used
by IBM Debug for
z Systems, Fault
Analyzer for z/OS,
and Application
Performance
Analyzer for z/OS)

Supported. Supported. Supported.

v .mdbg file2 Supported. Supported. Not supported.

Note:

1. The FORMAT(DWARF) option is supported for z/OS Version 1.6 and higher.

2. For C and C++ programs that are compiled with z/OS XL C/C++, Version 1.10 or later, if you specify the
FORMAT(DWARF) suboption of the DEBUG compiler option, the load modules are smaller and you can create
.mdbg files with captured source using the CDADBGLD utility.

zDebug needs only the .mdbg file to debug your program.

3. For C++, do not use the AGGREGATE keyword. Use ATTRIBUTES instead.

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 57

|
|

|
|

|
|
|

|
|
|

|
|

|

|

Preparing z/OS XL C and C++ programs
Perform the following steps for compiling your z/OS XL C and C++ programs:
1. Create a library (PDSE is suggested unless PDS is required for your

organization) for expanded source files. This library is only needed in test
environments where debugging is performed. This can be any RECFM /
LRECL / BLKSIZE supported as input by the compiler.

2. Allocate libraries (PDSE is suggested unless PDS is required for your
organization) for compiler listing files. Allocate one or more compiler listing
libraries for each environment, such as test and production.

3. Create a corresponding listing library for each load library. Specify
LRECL=133,RECFM=FBA,BLKSIZE=(multiple of lrecl up to 32k) or LRECL=137
or greater, RECFM=VBA,BLKSIZE= lrecl+4 to 32k.

4. Run a 2-stage compile. The first stage preprocesses the program, so the IBM
Application Delivery Foundation for z Systems family of products have access
to fully expanded source code. The second stage compiles the program.
v In the first compile stage, in both test and production environments:

– Specify compiler options PP(COMMENTS,NOLINES) to expand INCLUDEs and
macros. The output is SYSUT10 DD, which is the expanded source file
and is the input for the second compiler stage. Note that DB2 programs
containing SQL statements cannot use the PP option directly. If used, the
behavior is undefined. Follow z/OS Debugger instructions to Processing
SQL Statements first. See Debug Tool for z/OS V13.1 User's Guide, Chapter
7. "Preparing a DB2 program", section "Processing SQL statements".

Modify the SYSUT10 DD to enable zDebug, by saving it in an expanded
source library and specify a member name that is equal to the primary entry
point name or CSECT name of your application program.

v You can prepare your program with a one stage compile, skipping the
expanding source preprocessing step recommended above. If you do this,
you need to be aware of the following:
– Case 1: If there are no executable statements in the header file, the header

file is not included in the captured source that is saved in the mdbg file
and is not available for browsing during a zDebug session. All other z/OS
Debugger functionality is still available.

– Case 2: If there are executable statements in the header file, the header file
is included in the captured source that is saved in the mdbg file and is
available for browsing during a z/OS Debugger session.

v For all programs, such as batch, CICS, and IMS, for the second compiler
stage, refer to Table 11 on page 56 for the appropriate options.

5. Modify the SYSCPRT DD in the second compiler stage to refer to a file. This
file is the compiler listing and is the source information file for Application
Performance Analyzer for z/OS. Save it in the compiler listing library and
specify a member that is equal to the CSECT name of your application
program.
//SYSCPRT DD DSN=compiler.listing.pds(csect-name),DISP=SHR

Note: To enable source support in Fault Analyzer, it is a requirement that
CSECTs in C programs are named using:
#pragma csect(code, "csect_name")

where, if using a PDS(E), csect_name matches the compiler listing or LANGX
file member name.

58 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|

|

|
|

|

6. Modify the promotion process to promote compiler listing files. When a load
module is promoted, for example, from test to production, promote the
corresponding compiler listing file or files. A promotion can be a recompile,
copy, or move. Perform the same steps with the compiler listing file that you
perform with the module during promotion. You also need to promote any file
that is related to the compile, not just the listing. So you need to promote, for
example, dbg and mdbg files.

7. Optionally, include a zDebug Language Environment exit module into the load
module during the linkage editor step. This approach is one way to enable
zDebug's panel 6 in ISPF, a simple panel-driven method to start the debugger
automatically when a program runs, without JCL changes, based on the
program name and user ID.
Use module EQAD3CXT for batch programs, IMS/TM, IMS BTS programs, and
DB2 type MAIN stored procedures.

8. For CICS applications only: if the zDebug DTCN transaction is used to start
zDebug, link edit the zDebug CICS startup exit module EQADCCXT into the
application load module to enable zDebug in CICS. This link edit is not needed
if using the CADP transaction instead of DTCN.

Sample JCL for compiling z/OS C programs with TEST
Here is a JCL example for compiling a z/OS C program for use with the IBM
Application Delivery Foundation for z Systems family of products.
//* ADD A JOB CARD HERE
//*
//*
//* SAMPLE JCL TO PREPARE A Z/OS C PROGRAM USING TEST WITH HOOKS
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM AND TO
//* PRODUCE AN EXPANDED SOURCE FILE.
//* 2. THE EXPANDED SOURCE FILE IS RETAINED. IT IS USED BY
//* DEBUG TOOL.
//* 2. COMPILER PARMS TEST AND NOOPT ARE REQUIRED FOR DEBUG TOOL.
//* 3. COMPILER PARMS AGGREGATE, NOIPA, LIST, NOOFFSET, SOURCE,
//* AND XREF(FULL) ARE NEEDED TO FORMAT THE COMPILER LISTING
//* SO THAT IT CAN BE PROCESSED WITH IPVLANGX
//*
//* A STEP RUNS TO PRODUCE A LANGX FILE FOR FAULT ANALYZER AND APA.
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* BINDER (LINKAGE EDITOR):
//* 1. AN INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, INCLUDE THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
//* CPRFX: THE PREFIX THE C COMPILE IS INSTALLED UNDER

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 59

|

|

|
|
|

|
|

//* LEPRFX: THE PREFIX FOR THE LE RUNTIME AND LINK LIBS
//* DTPRFX: THE PREFIX OF THE DEBUG TOOL SEQAMOD LIBRARY
//* LANGXLIB: THE PROGRAM OBJECT LIBRARY FOR THE COMMON COMPONENT
//*
// SET CPRFX=CBC
// SET LEPRFX=CEE
// SET DTPRFX=EQAW
// SET LANGXLIB=IPV.SIPVMODA
//*
//***/
//* CREATE C COMPILER LISTING SYSPRINT, EXPANDED SOURCE DEBUG, */
//* AND EQALANGX FILES */
//***/
//ALLOC EXEC PGM=IEFBR14
//LISTING DD DSN=&SYSUID..ADLAB.CLST,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=VBA,LRECL=137,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//DBGSRC DD DSN=&SYSUID..ADLAB.CDBG,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//LANGX DD DSN=&SYSUID..ADLAB.EQALANGX,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=VB,LRECL=1562,BLKSIZE=0),
// SPACE=(TRK,(40,40,50)),UNIT=SYSDA
//* *
//**
//*---
//* COMPILE STEP1: GENERATE EXPANDED C SOURCE FILE IN THE DD
//* SYSUT10
//*---
//COMP1 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=(’PP(COMMENTS,NOLINES)’)
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
// DD DSNAME=&SYSUID..ADLAB.COPYLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD DISP=SHR,DSN=&SYSUID..ADLAB.CDBG(TMC01A)
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DUMMY
//SYSIN DD DSNAME=&SYSUID..ADLAB.SOURCE(TMC01A),DISP=SHR
//*
//*---
//* COMPILE STEP2: COMPILE THE EXPANDED SOURCE FILE WITH THE DEBUG

60 PD Tools Common Component Customization Guide and User Guide V1R7

//* COMPILER OPTION TEST
//*---
//COMP2 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=(’TEST, AGGREGATE, NOIPA, LIST, NESTINC(255),’,
// ’ NOOFFSET, NOOPT, SOURCE, XREF, LONGNAME’)
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
// DD DSNAME=&LEPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
//SYSCPRT DD DISP=SHR,DSN=&SYSUID..ADLAB.CLST(TMC01A)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DSN=&&TEMOBJ1(TMC01A),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(TRK,(20,20,20)),DCB=(RECFM=FB,BLKSIZE=3120,LRECL=80,DSORG=PO)
//SYSIN DD DSNAME=&SYSUID..ADLAB.CDBG(TMC01A),DISP=SHR
//*
//*---
//* LINK STEP: LINK THE COMPILED OBJECT DECK
//*---
//LKED EXEC PGM=IEWL,PARM=(LET,MAP,LIST)
//SYSLIB DD DSN=&LEPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD
//SYSUT1 DD SPACE=(TRK,(10,10)),UNIT=SYSDA
//OBJECT DD DISP=(OLD,PASS),DSN=&&TEMOBJ1
//* DTLIB DD DSN=&DTPRFX..SEQAMOD,DISP=SHR
//SYSLIN DD *
INCLUDE OBJECT(TMC01A)
ENTRY CEESTART
NAME TMC01(R)
/*
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES).
//* AN INCLUDE CAN BE ADDED TO SYSLIN IN THE APPRORIATE SEQUENCE:
//* INCLUDE DTLIB(EQADBCXT)
//**
//* GENERATE THE TMC01A EQALANGX FILE
//**
//LANGX1 EXEC PGM=IPVLANGX,REGION=32M,
// PARM=’(C ERROR’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEPRFX..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.CLST(TMC01A),DISP=SHR
//IDILANGX DD DSN=&SYSUID..ADLAB.EQALANGX(TMC01A),DISP=(OLD)

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 61

Sample JCL for compiling z/OS C++ programs
Here is a JCL example for compiling a z/OS C++ program for use with the IBM
Application Delivery Foundation for z Systems family of products.
//* ADD A JOB CARD HERE
//*
//*
//* SAMPLE JCL TO PREPARE A Z/OS C++ PROGRAM USING DWARF WITHOUT HOOKS
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM AND TO
//* PRODUCE AN EXPANDED SOURCE FILE.
//* 2. THE EXPANDED SOURCE FILE IS RETAINED. IT IS USED BY
//* THE MDBG CREATE ROUTINE TO CAPTURE THE SOURCE.
//* 2. COMPILER PARMS ARE SPECIFIED TO GENERATE A DWARF FILE WITH
//* NOHOOKS. OTHER OPTIONS ARE SPECIFIED TO FULFILL FA, DT AND
//* APA REQUIREMENTS.
//*
//* BIND:
//* 1. AN INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, INCLUDE THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (FOR SUB THIS IS SUPPORTED ONLY FOR INVOCATIONS THROUGH CALL_SUB)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* MDBG:
//* AN MDBG FILE IS CREATED FOR DEBUG TOOL. IT WILL CONTAIN ALL THE
//* ROUTINES IN THE PROGRAM OBJECT WITH DBG FILES AND THE CAPTURED
//* SOURCE. IN ORDER TO USE THIS FILE IN DEBUG TOOL, THE DEBUG TOOL
//* SESSION NEEDS TO HAVE THE EQAOPTS MDBG COMMAND SET TO YES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
//* CPRFX: THE PREFIX THE C++ COMPILE IS INSTALLED UNDER
//* LEPRFX: THE PREFIX FOR THE LE RUNTIME AND LINK LIBS
//* DTPRFX: THE PREFIX OF THE DEBUG TOOL SEQAMOD LIBRARY
//*
// SET CPRFX=CBC
// SET LEPRFX=CEE
// SET DTPRFX=EQAW
//*
//***/
//* CREATE C++ COMPILER LISTING SYSPRINT, EXPANDED SOURCE DEBUG, */
//* DBG AND MDBG files. */
//***/
//ALLOC EXEC PGM=IEFBR14
//LISTING DD DSN=&SYSUID..ADLAB.CLST,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=VBA,LRECL=137,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//DBGSRC DD DSN=&SYSUID..ADLAB.CDBG,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//DBG DD DSN=&SYSUID..ADLAB.DBG,

62 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(40,40,50)),UNIT=SYSDA
//MDBG DD DSN=&SYSUID..ADLAB.MDBG,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(40,40,50)),UNIT=SYSDA
//* *
//**
//*---
//* COMPILE STEP1: GENERATE EXPANDED C++ SOURCE FILE IN THE DD
//* SYSUT10
//*---
//COMP1 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=(’PP(COMMENTS,NOLINES)’)
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
// DD DSNAME=&SYSUID..ADLAB.COPYLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD DISP=SHR,DSN=&SYSUID..ADLAB.CDBG(TMC01A)
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DUMMY
//SYSIN DD DSNAME=&SYSUID..ADLAB.SOURCE(TMC01A),DISP=SHR
//*
//*---
//* COMPILE STEP2: COMPILE THE EXPANDED SOURCE FILE WITH THE DEBUG
//* COMPILER DEBUG(FORMAT(DWARF, NOHOOK))
//*---
//COMP2 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=(’/CXX DEBUG(FORMAT(DWARF), NOHOOK, SYMBOL),’,
// ’ LIST, LONGNAME, NOOFFSET’)
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
// DD DSNAME=&LEPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
//SYSCPRT DD DISP=SHR,DSN=&SYSUID..ADLAB.CLST(TMC01A)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 63

// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DSN=&&TEMOBJ1(TMC01A),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(TRK,(20,20,20)),DCB=(RECFM=FB,BLKSIZE=3120,LRECL=80,DSORG=PO)
//SYSIN DD DSNAME=&SYSUID..ADLAB.CDBG(TMC01A),DISP=SHR
//*
//*---
//* BIND STEP: BIND THE COMPILED OBJECT DECK INTO A PDSE
//*---
//BIND EXEC PGM=IEWL,PARM=(LET,MAP,LIST)
//SYSLIB DD DSN=&LEPRFX..SCEELKED,DISP=SHR
// DD DSN=&LEPRFX..SCEECPP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOADPDSE
//SYSUT1 DD SPACE=(TRK,(10,10)),UNIT=SYSDA
//OBJECT DD DISP=(OLD,PASS),DSN=&&TEMOBJ1
//* DTLIB DD DSN=&DTPRFX..SEQAMOD,DISP=SHR
//SYSLIN DD *
INCLUDE OBJECT(TMC01A)
ENTRY CEESTART
NAME TMC01(R)
/*
//*
//*---
//* BUILD MDBG STEP
//*---
//DBGLD EXEC PGM=CDADBGLD,REGION=1500K,
// PARM=(’ENVAR("LIBPATH=/usr/lib")/VERSION CAPSRC’)
//STEPLIB DD DISP=SHR,DSN=&LEPRFX..SCEERUN2
// DD DISP=SHR,DSN=&LEPRFX..SCEERUN
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.LOADPDSE(TMC01)
//SYSMDBG DD DISP=SHR,DSN=&SYSUID..ADLAB.MDBG(TMC01)
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
/*

Assembler programs
The following table shows various assembler options that can be used to prepare
programs for use with the IBM Application Delivery Foundation for z Systems
family of products (IBM Debug for z Systems, Fault Analyzer for z/OS and
Application Performance Analyzer for z/OS). The methods suggested in the
following table indicate whether the load module produced is suitable for a
production environment. Load modules suitable for a production environment
have no significant runtime overhead.

64 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

Table 12. Examples of assembler options and source information files that are supported by
IBM Application Delivery Foundation for z Systems family of products for Assembler.

Assembler
options

Source
information
file type
produced

Is the load
module
production
ready?

Options
supported
and
suggested for
IBM Debug
for z Systems

Options
supported
and
suggested for
Fault
Analyzer for
z/OS

Options
supported
and
suggested for
Application
Performance
Analyzer for
z/OS

ADATA SYSADATA
file

Yes N/A Supported Supported

ADATA LANGX file Yes Suggested for production and test

Preparing Assembler programs
Perform the following steps for assembling your programs:
1. Allocate libraries (PDSE is suggested unless PDS is required for your

organization) for LANGX files. Allocate one or more LANGX libraries for each
environment, such as test and production.

2. Create a corresponding LANGX library for each load library. Specify
LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k.

3. For all programs, such as batch, CICS, and IMS, in both test and production
environments, specify ADATA.
ADATA instructs the assembler to produce a SYSADATA file, which contains
source and symbolic data about the program. This produces a production-ready
module that can be debugged using IBM Debug for z Systems. ADATA does not
affect the contents of the assembled module.

4. Add a SYSADATA DD in the assembler step. This file is created by the
assembler and it can be a permanent or temporary file. Specify LRECL=8188 or
greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k. This file is the input to the
IPVLANGX utility.

5. Add a step after the assembler step to run the IPVLANGX utility. The
IPVLANGX utility reads the SYSADATA file and creates a LANGX file. The
LANGX file is the source information file for IBM Debug for z Systems, Fault
Analyzer for z/OS and Application Performance Analyzer for z/OS.

6. Save the LANGX file in the LANGX file library, and specify a member name
that is equal to the CSECT name.

7. Modify the promotion process to promote LANGX files. When a load module
is promoted, for example, from test to production, promote the corresponding
LANGX file or files. A promotion can be a recompile, copy, or move. Perform
the same steps with the LANGX file that you perform with the module during
promotion.

8. If the assembler program is Language Environment-enabled, optionally include
a zDebug Language Environment exit module into the load module during the
linkage editor step. This approach is one way to enable zDebug’s panel 6 in
ISPF, a simple panel-driven method to start the debugger automatically when a
program runs, without JCL changes, based on the program name and user ID.
Use module EQADBCXT for batch programs (including IMS batch),
EQADICXT for IMS/TM programs and EQADDCXT for DB2 stored
procedures. Do not include the exit module for CICS programs.
You can also use module EQAD3CXT for batch programs, IMS/TM, IMS BTS
programs, and DB2 type MAIN stored procedures

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 65

|

|
|

|

|

|
|

9. For CICS programs only: If the program is a CICS main program, is enabled for
Language Environment, and the zDebug DTCN transaction is used to start
zDebug, then supplied module EQADCCXT must be included in the load
module during the linkage editor step.

Sample JCL for assembling a program
Here is a JCL example for assembling a program for use with the IBM Application
Delivery Foundation for z Systems family of products.
//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ASSEMBLER PROGRAM
//* FOR THE IBM ZSERIES PD TOOLS PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* ASSEMBLER:
//* 1. AN ADATA PARM IS REQUIRED TO PRODUCE A SYSADATA FILE
//*
//* A STEP THAT PROCESSES THE SYSADATA FILE,
//* AND CREATES A LANGX FILE IS NEEDED.
//*
//* BINDER (LINKAGE EDITOR):
//* 1. AMODE / RMODE CAN BE CODED AS NEEDED BY THE PROGRAM. THEY ARE
//* NOT REQUIRED FOR PD TOOLS.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=ASAM1 PROGRAM NAME
// SET Language EnvironmentHLQ=’CEE’ Language Environment HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX=’IPVLANGX’ IPVLANGX UTILITY PROGRAM
// SET LANGXLIB=’IPV.SIPVMODA’ LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* *********************************
//* ASSEMBLER STEP
//* *********************************
//ASM1 EXEC PGM=ASMA90,COND=(4,LT),REGION=32M,
// PARM=’ADATA,OBJECT’
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DISP=SHR,DSN=&SYSUID..ADLAB.OBJ(&MEM)
//SYSADATA DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSADATA(&MEM)
//SYSLIB DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=&LEHLQ..SCEEMAC,DISP=SHR
//SYSUT1 DD DISP=(NEW,DELETE),DSN=&&SYSUT1,SPACE=(1700,(900,450)),
// UNIT=&UNITDEV
//SYSUT2 DD DISP=(NEW,DELETE),DSN=&&SYSUT2,SPACE=(1700,(600,300)),
// UNIT=&UNITDEV
//SYSUT3 DD DISP=(NEW,DELETE),DSN=&&SYSUT3,SPACE=(1700,(600,300)),
// UNIT=&UNITDEV
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM=’(ASM ERROR’
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//SYSADATA DD DSN=&SYSUID..ADLAB.SYSADATA(&MEM),DISP=SHR
//IDILANGX DD DSN=&SYSUID..ADLAB.EQALANGX(&MEM),DISP=SHR
//*
//* *********************************

66 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

|
|

//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=’MAP’,REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
// DD *

MODE AMODE(31),RMODE(24)
ENTRY ASAM1

//*

Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz family of products 67

68 PD Tools Common Component Customization Guide and User Guide V1R7

Chapter 6. IPVLANGX compiler listing to side file conversion
utility

IPVLANGX is a utility program that converts a compiler listing, or SYSADATA
file, to a LANGX side file.

Creating side files using IPVLANGX
To create a side file from a compiler listing, a program named IPVLANGX is used.

The sample JCL in Figure 1 on page 70:
v Compiles a COBOL program.

Note: You can only compile one program per compile step in order to name the
compiler listing PDS(E) member (if using a partitioned data set), and to ensure
that only one compiler listing is written to the output file.

v Executes IPVLANGX to process the listing and store it as a side file where the
ADFz family of products can access it.
For return codes issued by IPVLANGX, see “IPVLANGX return codes” on page
100.

v Writes the listing as part of the job output.

The sample file is provided as member IPVSCMPS in the IPV.SIPVSAM1 data set.

© Copyright IBM Corp. 2012, 2016 69

|

After you have created and stored a side file, there is no benefit to the ADFz
family of products in retaining the listing.

If you already have listings, you can turn them into side files. Here is sample JCL
to do this conversion (it is provided as member IPVSFILE in the IPV.SIPVSAM1
data set):

//IPVSCMPS JOB (GSF),’GENERATE.SIDE.FILE’,NOTIFY=&SYSUID.,
// MSGCLASS=X,CLASS=A,MSGLEVEL=(1,1)
// JCLLIB ORDER=(IGY.V2R1M0.SIGYPROC) <== INSTALLATION
//* IGYWCLG PROC
//*
//**/
//* THIS JOB RUNS A COBOL COMPILE PLUS PRODUCES A SIDE FILE */
//* FROM A PROGRAM LISTING THAT THE PD TOOLS PRODUCTS CAN */
//* USE FOR OBTAINING SOURCE INFORMATION. */
//* THE COMPILE OUTPUT IS THEN WRITTEN TO SYSUT2 IN THE */
//* IEBGENER STEP. */
//**/
//*
//CBLRUN EXEC IGYWC,PARM.COBOL=’LIST,MAP,Source,XREF’
//COBOL.SYSIN DD DATA,DLM=’##’...
(Program source not shown)...
##
//COBOL.SYSPRINT DD DSN=&&COBLIST(IPVSCBL1),
// DISP=(,PASS),SPACE=(TRK,(10,5,5),RLSE),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//*
//IPVLANGX EXEC PGM=IPVLANGX,REGION=4096K,
// PARM=’IDISCBL1 (COBOL ERROR’
//LISTING DD DISP=(OLD,PASS),DSN=&&COBLIST ▌1▐
//IDILANGX DD DISP=SHR,DSN=IPV.IPVLANGX ▌2▐
//SYSUDUMP DD SYSOUT=*
//*
//IEBGENER EXEC PGM=IEBGENER,REGION=4096K
//SYSUT1 DD DISP=OLD,DSN=&&COBLIST(IPVSCBL1)
//SYSUT2 DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
/*

Figure 1. Sample JCL to compile a COBOL program and store the side file

Creating side files using IPVLANGX

70 PD Tools Common Component Customization Guide and User Guide V1R7

|
|

Notes®:

▌1▐ DDname must be LISTING for all types of compiler listings, or SYSADATA
for an assembler ADATA file.

▌2▐ DDname must be IDILANGX for the output LANGX side file. The data set
must be sequential or PDS(E), RECFM=VB, LRECL≥1562.

Refer to the documentation for the individual ADFz family of products for
information about how to provide the LANGX side file for processing.

A compiler listing is the only data format that IPVLANGX accepts as input, with
the exception of SYSADATA for assembler.

IPVLANGX parameters
The PARM string passed to IPVLANGX should contain:

Syntax

►►

▼

▼

PARM=' (language
mbr_name

ERROR
,
(1)

PermitLangx(msgid)

►◄

Notes:

1 Either comma or blank character is permitted as delimiter.

 where:

mbr_name
The compiler listing or ADATA file member name in the input data set
identified by the LISTING DD name (for a compiler listing) or the
SYSADATA DD name (if an ADATA file). This parameter is optional. If
omitted, the JCL must specify for the compiler listing or ADATA file, either
a sequential data set, or a PDS(E) data set with member name. Also, the
output IPVLANGX member is named according to the input program
name. In the case of COBOL, for example, this name is the name found on
the PROGRAM-ID source line.

//IPVLANGX JOB (C97),’IPVLANGX’,MSGCLASS=X,
// CLASS=A,NOTIFY=&SYSUID
//***
//* This job produces a side file from a program listing that
//* the PD Tools products can use for obtaining source information.
//* This particular example is set up for a COBOL extraction
//* from IPV.LISTING.COBOL(COBOLA) to IPV.IPVLANGX
//***
//IPVLANGX EXEC PGM=IPVLANGX,REGION=4096K,
// PARM=’COBOLA (COBOL ERROR’
//LISTING DD DISP=SHR,DSN=IDI.LISTING.COBOL ▌1▐
//IDILANGX DD DISP=SHR,DSN=IDI.IPVLANGX ▌2▐
//SYSUDUMP DD SYSOUT=*

Figure 2. Sample JCL to create a side file from a COBOL listing

Creating side files using IPVLANGX

Chapter 6. IPVLANGX compiler listing to side file conversion utility 71

|

language
The language of the compiler listing or ADATA file, as:
v COBOL
v PLI
v C
v ASM

ERROR
An optional parameter that provides more diagnostics on variables for
which information is incomplete.

PermitLangx(msgid, ...)
An optional parameter that specifies message IDs for compiler error
messages which should be ignored. For details, see IBM Fault Analyzer for
z/OS User’s Guide and Reference. Chapter 33 “Options”, section
“PermitLangx”.

Including an IPVLANGX step in your SCLM translator
If you use the ISPF/PDF Software Configuration and Library Manager (SCLM) to
manage your application software, then you might want to include an IPVLANGX
step in your SCLM translator, since LANGX side files generally take up less disk
space than compiler listings. Shown in the following, and included in the PD Tools
Common Component softcopy samples data set, are examples of an IPVLANGX
step inserted into a High Level Assembler and a COBOL SCLM translator.

High Level Assembler SCLM example
This example is included in data set IPV.SIPVSAM1 as member IPVSCLMA.
* SYSADATA DDNAME used in HLASM step.
* (* SYSADATA *)

FLMALLOC IOTYPE=W,DDNAME=SYSADATA,RECFM=VB,RECNUM=9000, C
LRECL=8188,BLKSIZE=8192,PRINT=Y

*
*
* IPVLANGX BUILD TRANSLATOR
*

FLMTRNSL CALLNAM=’IPVLANGX’, C
FUNCTN=BUILD, C
COMPILE=IPVLANGX, C
DSNAME=IPV.SIPVMODA, C
VERSION=3.5.2, C
GOODRC=0, C
PORDER=1, C
OPTIONS=’@@FLMMBR(ASM ERROR’

*
* (* SYSADATA *)

FLMALLOC IOTYPE=U,DDNAME=SYSADATA
*
* (* IDILANGX *)

FLMALLOC IOTYPE=P,DDNAME=IDILANGX,DFLTTYP=IDILANGX, C
KEYREF=OUT2,BLKSIZE=27998,LRECL=1562,RECFM=VB, C
RECNUM=10000,DIRBLKS=50,DFLTMEM=*

COBOL SCLM example
This example is included in data set IPV.SIPVSAM1 as member IPVSCLMC.

* --COPY SYSPRINT FILE TO LISTING
* The COPYFILE EXEC, in dataset PDFTDEV.PROJDEFS.EXEC contains the
* following:
*

Creating side files using IPVLANGX

72 PD Tools Common Component Customization Guide and User Guide V1R7

* /* REXX */
* /**/
* /* Copy file I to file O. Both are assumed to be pre-allocated. */
* /**/
* PARSE UPPER ARG I","O .
* "EXECIO * DISKR "I" (STEM R. FINIS "
* "EXECIO * DISKW "O" (STEM R. FINIS "
* RETURN
*

*

FLMTRNSL CALLNAM=’COPY FILES ’, C
FUNCTN=BUILD, C
COMPILE=COPYFILE, C
DSNAME=PDFTDEV.PROJDEFS.EXEC, C
CALLMETH=TSOLNK, C
VERSION=1.0, C
PORDER=1, C
OPTIONS=(SYSPRINT,LISTING), C
GOODRC=0

FLMALLOC IOTYPE=W,RECFM=VBA,LRECL=133, C
RECNUM=90000,DDNAME=LISTING

*
FLMTRNSL CALLNAM=’IPVLANGX’, C

FUNCTN=BUILD, C
COMPILE=IPVLANGX, C
DSNAME=IPV.SIPVMODA, C
VERSION=3.5.2, C
GOODRC=0, C
PORDER=1, C
OPTIONS=’@@FLMMBR(COBOL ERROR’

*
* (* LISTING *)

FLMALLOC IOTYPE=U,DDNAME=LISTING
*
* (* IDILANGX *)

FLMALLOC IOTYPE=P,DDNAME=IDILANGX,DFLTTYP=IDILANGX, C
KEYREF=OUT2,BLKSIZE=27998,LRECL=1562,RECFM=VB, C
RECNUM=10000,DIRBLKS=50,DFLTMEM=*

Including an IPVLANGX step in your SCLM translator

Chapter 6. IPVLANGX compiler listing to side file conversion utility 73

Including an IPVLANGX step in your SCLM translator

74 PD Tools Common Component Customization Guide and User Guide V1R7

Chapter 7. IPVLANGP side file formatting utility

A utility program, IPVLANGP, is provided, which can be used to create a readable
listing from one of the following:
v A LANGX side file.
v For Enterprise PL/I, a SYSDEBUG side file that is generated by using the PL/I

TEST(SEPARATE) compiler option.
v For Enterprise COBOL prior to Version 5, a SYSDEBUG side file that is

generated by using the COBOL TEST(SEPARATE) option.
v For Enterprise COBOL Version 5, a program object containing DWARF

debugging information generated by using the TEST(SOURCE) option.

This approach might be useful if side files, rather than compiler listings, are kept
in order to conserve DASD space. The utility program is able to format the side file
or program object DWARF debugging information in a way that resembles the
original compiler listing.

IPVLANGP can be executed in a number of different ways:
v As an ISPF option 3.4 (Data Set List Utility) line command against a sequential

LANGX side file or COBOL or PL/I SYSDEBUG side file data set, or if the data
set is partitioned, as a line command against a member of the data set. For
Enterprise COBOL Version 5, IPVLANGP can also be issued against a program
object member of a PDSE load library.
If a sequential COBOL or PL/I SYSDEBUG side file data set is used, or if the
member of a partitioned COBOL or PL/I SYSDEBUG side file data set does not
match any PROGRAM-ID named program contained within it, then a prompt is
displayed which permits a program name to be specified.
When a COBOL Version 5 program object contains more than one compile unit,
a prompt is displayed to select the desired program.
All LANGX side files that are contained in a sequential data set, or a partitioned
data set member, are displayed, regardless of whether these match the member
name or not.
The output is written to a temporary data set and displayed using ISPF EDIT.

v From a Fault Analyzer ISPF interface display, using the Services action-bar
pull-down menu, and selecting the “IPVLANGP Side File Formatting Utility”
option. A prompt is displayed, from which you specify the data set to be
formatted.
The output is presented in an ISPF display, but may be copied to a data set
using the COPY command.

v As a batch job, like the following:
//PRTLANGX JOB ...
//STEP1 EXEC PGM=IPVLANGP,PARM=’parms’
//SYSPRINT DD SYSOUT=*

The PARM string passed to IPVLANGP should contain:

© Copyright IBM Corp. 2012, 2016 75

Syntax

►► PARM='data_set_name
PROG:program_name

►◄

where:

data_set_name
The name of a sequential LANGX side file or COBOL or PL/I
SYSDEBUG side file data set, or if the data set is partitioned (as is the
case for COBOL Version 5 program objects), the data set name with
member name included in parentheses.

Examples:
MY.SYSDEBUG.SEQ.DS
MY.IPVLANGX.PDS.DS(MYPROG)

program_name
The name of a PROGRAM-ID named program contained within a
COBOL or PL/I SYSDEBUG side file or COBOL Version 5 program
object. This name must be specified if the COBOL or PL/I SYSDEBUG
side file data set is sequential, or if the member name of a partitioned
data set does not match the name of any program contained within it.

The formatted listing is written to the SYSPRINT DD. Normal listing file
attributes, such as variable-blocked record format and logical record length of
137, are generally appropriate.

Deferred Breakpoints Feature
Start IPVLANGP with the “bkp” parameter for a COBOL or PL/I SYSDEBUG file,
a COBOL LANGX file, or a COBOL Version 5 program object containing DWARF
debugging information. You can also start it from zDebug Utilities or Fault
Analyzer Services menus. Here it is started from an ISPF member list:

Menu Functions Confirm Utilities Help
───
DSLIST JERRYBL.IPVLANGX Row 0000001 of 0000023
Command ===> Scroll ===> CSR

Name Prompt Size Created Changed ID
AFPBIM
AFPBITM
AFPLDOVL
ASMHOLE

ipvlangp COBEX1 bkp ▌1▐
COBOV1
COBTINY
CPPTST1
DACBB030
DACVD002
DAGOTST
HRHP702C
NAMUCSM
OSVSC01
PLIPARM
PLIPARME
PLIPARM1

F1=Help F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left
F11=Right F12=Cancel

▌1▐ The “bkp” parameter enables setting of deferred breakpoints.

IPVLANGP side file formatting utility

76 PD Tools Common Component Customization Guide and User Guide V1R7

|

IPVLANGP then prompts for the zDebug Repository and the program's load
module name (default is program name):

Menu Functions Confirm Utilities Help
─ ┌────────────────────────── Deferred Breakpoints ───────────────────────────┐
D │ │
C │ IPVLANGP requires the name of the zDebug Repository and a load module │
│ name for program COBEX1 │

_ │ │
│ Repository (PDS/E) . . PRINT.PDS ▌2▐ │
│ Load Module COBEX1 │
│ │

I │ F1=Help F3=Exit F12=Cancel │
!───┘

COBTINY
CPPTST1
DACBB030
DAGOTST
HRHP702C
NAMUCSM
OSVSC01
PLIPARM
PLIPARME
PLIPARM1

F1=Help F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left
F11=Right F12=Cancel

▌2▐ The Repository data set name is saved in an ISPF variable and is
automatically initialized to the last used data set name on subsequent
invocations.

The main IPVLANGP panel now appears:

File Services
───
IPVLANGP Line 1 Col 1 80
Command ===> Scroll ===> CSR

IPVLANGX Print Utility V1R7M0 (AI41974 2015/08/

Program Name : COBEX1
Data Set Name. : JERRYBL.IPVLANGX(COBEX1)
Options in Effect. : NoLocale
Compiler name. : IBM Enterprise COBOL for z/OS 4.2.0
Date of Compile. : 2015-04-30
Time of Compile. : 12.52.1130
Date of IPVLANGX extraction. : 2015-07-06
Time of IPVLANGX extraction. : 11.43.2206

Source listing

┌──┐
│ Place cursor on an executable source line number or label to add a │ -+----5-
│ breakpoint │
!──┘ own
F10=Left F11=Right

Any existing breakpoints for the program are retrieved from the repository. Line
(Stmt) numbers where breakpoints are set will be highlighted, for example lines
173 and 175 in the following example:

Deferred Breakpoints Feature

Chapter 7. IPVLANGP side file formatting utility 77

|

|

File Services
───
IPVLANGP Line 176 Col 1 80
Command ===> Scroll ===> CSR

00091C 000171 PERFORM CALC-TAX.
000173 CALC-TAX.

00093E 000174 IF ELECTRIC
000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

Breakpoints can be added or viewed by pressing PF6, which is sensitive to the
cursor position:
v With the cursor on a Line (Stmt) number, a popup appears allowing a new line

or label breakpoint to be added, or an existing breakpoint to be modified (or
cleared).

v If the cursor is outside of the source area (for example, on the command line), a
list of existing breakpoints is shown allowing one or more to be worked with.

In the following example, PF6 is pressed with the cursor on the command line:

Deferred Breakpoints Feature

78 PD Tools Common Component Customization Guide and User Guide V1R7

File Services
┌───┐
│ Breakpoints Line 1 Col 1 76 │
│ │
│ S to select breakpoints to work with: │
│ s 000173 AT EVERY 10 FROM 1 TO 9 LABEL CALC-TAX; │
│ 000175 AT EVERY 10 FROM 9 TO 1 LINE 175 WHEN cc=0; │
│ │
│ *** Bottom of data. │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ Command ===> Scroll ===> CSR │
│ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
!───┘
0008F4 000167 MOVE ZERO TO TAX-AMOUNT.
0008FA 000168 PERFORM REDO-TAX.

000170 REDO-TAX.
00091C 000171 PERFORM CALC-TAX.

000173 CALC-TAX.
00093E 000174 IF ELECTRIC
000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

As shown, breakpoints are listed in zDebug command format.

Enter the 'S' line command to work with one or more existing line or label
breakpoints. Here, the line 173 breakpoint is selected:

Deferred Breakpoints Feature

Chapter 7. IPVLANGP side file formatting utility 79

|

File Services
┌───┐
│ Breakpoints Line 1 Col 1 76 │
│ ┌───┐
│ S │ Add Label Breakpoint Line 1 Col 1 76 │
│ s │ │
│ │ Label: │
│ │ 000173 CALC-TAX. │
│ * │ │
│ │ EVERY 10 FROM 1 TO 9 ▌3▐ │
│ │ Action playback enable │
│ │ │
│ │ │
│ │ │
│ │ Clear breakpoint? N (Y/N) │
│ │ │
│ │ │
│ C │ Press ENTER to change/clear breakpoint. │
│ │ │
!── │ Command ===> Scroll ===> CSR │
000 │ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
000 !───┘

000170 REDO-TAX.
00091C 000171 PERFORM CALC-TAX.

000173 CALC-TAX.
00093E 000174 IF ELECTRIC
000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

The Add Label Breakpoint popup is used to add, change or clear a label
breakpoint.

▌3▐ Line and label breakpoints may specify an EVERY clause and an Action.

Deferred Breakpoints Feature

80 PD Tools Common Component Customization Guide and User Guide V1R7

File Services
┌───┐
│ Breakpoints Line 1 Col 1 76 │
│ ┌───┐
│ S │ Add Label Breakpoint Line 1 Col 1 76 │
│ s │ │
│ │ Label: │
│ │ 000173 CALC-TAX. │
│ * │ │
│ │ EVERY 10 FROM 1 TO 9 │
│ │ WHEN cc = 0 ▌4▐ │
│ │ │
│ │ │
│ │ Action playback disable │
│ │ │
│ │ │
│ │ │
│ C │ Clear breakpoint? N (Y/N) │
│ │ │
!── │ │
000 │ Press ENTER to change/clear breakpoint. │
000 │ │

│ *** Bottom of data. │
000 │ │

│ Command ===> Scroll ===> CSR │
000 │ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
000 !───┘
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

Similarly, the Add Line Breakpoint popup is used to add, change or clear (delete) a
line breakpoint.

▌4▐ Line breakpoints may also specify a WHEN condition.

On exiting IPVLANGP, the following popup appears:

Deferred Breakpoints Feature

Chapter 7. IPVLANGP side file formatting utility 81

File Services
┌───┐
│ Save Breakpoints for Program COBEX1 Line 1 Col 1 76 │
│ │
│ Select one of the following: │
│ 1. Save breakpoints │
│ 2. Exit without saving new or changed breakpoints │
│ 3. Clear all breakpoints for this program │
│ │
│ Breakpoints: │
│ 000173 AT EVERY 10 FROM 1 TO 9 LABEL CALC-TAX playback enable; │
│ 000175 AT EVERY 10 FROM 9 TO 1 LINE 175 WHEN cc=0 playback disable; │
│ │
│ *** Bottom of data. │
│ │
│ │
│ │
│ Command ===> Scroll ===> CSR │
│ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
!───┘
0008F4 000167 MOVE ZERO TO TAX-AMOUNT.
0008FA 000168 PERFORM REDO-TAX.

000170 REDO-TAX.
00091C 000171 PERFORM CALC-TAX.

000173 CALC-TAX.
00093E 000174 IF ELECTRIC
000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

Breakpoints are saved back to the Repository in XML format. Use DTU to convert
the breakpoint XML definitions to a z/OS Debugger commands file ready for use
with the next debug session.

Deferred Breakpoints also feature in Fault Analyzer's COBOL Explorer.

Deferred Breakpoints Feature

82 PD Tools Common Component Customization Guide and User Guide V1R7

|

Chapter 8. IPVLANGO Automatic Binary Optimizer LANGX file
update utility

The Automatic Binary Optimizer for z/OS (ABO) product optimizes COBOL object
code produced by the following compilers:
v Enterprise COBOL for z/OS Version 4
v Enterprise COBOL for z/OS Version 3
v COBOL for OS/390 & VM V2R2
v COBOL for OS/390 & VM V2R1
v COBOL for MVS & VM V1R2
v COBOL/370 1.1
v VS COBOL II V1.4.0 (LE enabled modules only)
v VS COBOL II V1.3.x (LE enabled modules only)

ABO optimization results in code changes that render any existing compiler listing
or side file unusable with the optimized program. The IPVLANGO utility creates
LANGX file members that can be used to provide source-level debugging of the
optimized program with ADFz family of products such as Fault Analyzer, zDebug,
and Application Performance Analyzer. New LANGX file members can be created
from compiler listings, SYSDEBUG side files, or existing LANGX files.

The sample job step in Figure 3 on page 84 takes the listing transforms file from a
previous ABO step and merges it with one or more LANGX file members to create
'optimized' LANGX members. (Refer to ABO documentation for the complete
optimization JCL, which this sample job step can be appended to.) If the listing
transforms file is a PDS(E), it must specify a member name. In Figure 3, the input
is a LANGX data set (DD:IPVLANGX); alternatively, it could be a compiler listing
(DD:IPVLCOB) or a SYSDEBUG data set (DD:IPVSYSDB).

As ABO can process multiple programs in a single invocation, the listing
transforms file has a PROC section for each optimized program. To accommodate
this, compiler listing, SYSDEBUG, and LANGX data set DDs should specify a
PDS(E) data set without a member name. The input PDS(E) should contain a
member for each PROC in the listing transforms file. Likewise, the output LANGX
PDS(E) contains a member for each PROC in the listing transforms file.

The IPVLANGO utility uses the following DDs:

LISTING
The (input) ABO listing transforms file that was written in the ABO step to
SYSPRINT. This can be a sequential data set or a PDS(E) member.

IPVLANGX | IPVLCOB | IPVSYSDB
The original (input) side file that represents one or more unoptimized
programs. This must be a PDS(E) that contains a member for each
program. Do not specify a member name. Use one of these DDs depending
on the input side file format.

IPVLANGO
The new (output) LANGX side file that represents one or more optimized
programs. This must be a VB PDS(E) with LRECL>=1562 and must not be
the same data set as the one specified for IPVLANGX. A member is written

© Copyright IBM Corp. 2012, 2016 83

|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

for each PROC in the listing transforms file. Do not specify a member
name. Note that this data set cannot subsequently be used as input to the
IPVLANGO utility.

//LANGO EXEC PGM=IPVLANGO
//LISTING DD DISP=SHR,DSN=*.OPT.SYSPRINT <--- Input ABO transforms file
//IPVLANGX DD DISP=SHR,DSN=JERRYBL.BINOPT.LANGX
//IPVLANGO DD DISP=SHR,DSN=JERRYBL.BINOPT.LANGX.ABO

Figure 3. Sample job step to create an 'optimized' LANGX side file

IPVLANGO Automatic Binary Optimizer LANGX file update utility

84 PD Tools Common Component Customization Guide and User Guide V1R7

|
|
|
|

|
|
|

|
|
|

Chapter 9. Maintaining PD Tools Common Component

Take the following steps to apply maintenance to PDTCC:
1. If PDTCC SMP/E target libraries are in LINKLIST, remove them from LLA and

VLF control before you perform the SMP/E APPLY. The removal is to avoid
errors when modules are loaded from LINKLIST because SMP/E compressed
or added extents to the libraries.

2. Perform SMP/E APPLY.
3. If the updated PDTCC modules are in LPA, do one of the following actions:
v IPL with CLPA
v Perform dynamic updates as follows:

– If the PDTCC module IPVLANGX is placed in LPA by using the
command SETPROG, which is opposed to placing IPV.SIPVLPA1 in LPA,
take the following actions:
a. Issue the following command:

SETPROG LPA,DELETE,MOD=IPVLANGX),FORCE=YES

For complete information about the command SETPROG, see MVS
System Commands.

b. Issue the following command:
F LLA,REFRESH

c. Optional: To add the IPVLANGX module to LPA and regain the region
size space advantage, issue the following command:
SETPROG LPA,ADD,MOD=(IPVLANGX),DSN=LNKLST

– If IPV.SIPVLPA1 is included in your LPALIST, issue the following
command:
SETPROG LPA,ADD,MOD=(IPVLANGX),DSN=LNKLST

© Copyright IBM Corp. 2012, 2016 85

Maintaining PD Tools Common Component

86 PD Tools Common Component Customization Guide and User Guide V1R7

Chapter 10. PDTCC event processing

PDTCC event processing is a feature that allows any products or systems including
ADFz family of products to send data to an asynchronous installation-written
back-end for processing. Do not send sensitive information by using this feature.
The validity of all data is the responsibility of the users.

The PDTCC event processing feature includes the following items:
v Sender load module IPVEPSND
v Receiver load module IPVEPRCV
v IPVCNF00 option EVENTPROCESSINGEXIT
v The Event Processing user exit

Sender load module IPVEPSND

The IPVEPSND load module contains the fetchable LE function IPVEPSND(). It
spawns an extra BPX batch address space in which the module IPVEPRCV runs
asynchronously.

This module transfers data to IPVEPRCV via stdin, and any debug information is
passed back to it via stdout if the debug mode is active.

If this feature is enabled via the EventProcessingExit option, ADFz family of
products transparently call IPVEPSND to perform event processing.

Note: If the debug mode is activated, IPVEPRCV does not run asynchronously to
IPVEPSND.

Usage

IPVEPSND, the fetchable LE function IPVEPSND(), is defined as:
int IPVEPSND(char *ProdID, char *UsrPgm, char *BufPtr, char *DbgDDn);

The parameters are defined as follows:

ProdID The product ID. For example: the Fault Analyzer product ID is “IDI”; the
File Manager product ID is “FMN”.

UsrPgm
The user program name. For ADFz family of products, the user program
name is obtained via the EVENTPROCESSINGEXIT option.

BufPtr The buffer pointer. The 31-bit address of a storage buffer to be passed to
the Event Processing exit in the following format:

Byte 0-3
Total data length

Byte 4 Segment data

Byte 0-1
Segment length

Byte 2 Segment data

© Copyright IBM Corp. 2012, 2016 87

|

|
|

|

Repeat segment length and segment data for all segments

DbgDDn
The debug DDname.

The returned int value includes the following descriptive bytes:

Byte 0 IPVEPSND return code (0 = successful).

Byte 1 IPVEPRCV return code (0 = successful). This byte is valid only if the
debug DDname is specified.

Byte 2-3
User exit return code. This byte is valid only if the debug DDname is
specified.

Example
void *fetch_ptr;
typedef void exit_U(char *ProdID, char *UsrPgm, void *BufPtr, char *DbgDDn);
#pragma linkage(exit_U, OS)
exit_U *exit_ep;
char *exit_name;
char event_data[1024];
char *data_item1 = “Fred=Yes”;
char *data_item2 = “Barney=No”;
int i;

i = 4;
*(short *)&event_data[i] = strlen(data_item1);
memcpy(data_buffer + i + 2, data_item1, strlen(data_item1));
i += (2 + strlen(data_item1));

*(short *)&event_data[i] = strlen(data_item2);
memcpy(data_buffer + i + 2, data_item2, strlen(data_item2));
i += (2 + strlen(data_item2));

*(int *)&event_data[0] = i;

// Set exit_name to the current EVENTPROCESSINGEXIT option value...

fetch_ptr = (void *)fetch("IPVEPSND");
if (fetch_ptr) {

exit_ep = (exit_U *)fetch_ptr;
exit_ep("XYZ", exit_name, event_data, 0);

}

Receiver load module IPVEPRCV

The IPVEPRCV load module is internal. It is the load module that is executed in
the BPX batch address space that is spawned by IPVEPSND().

IPVEPRCV provides an interface to the user exit that is specified via the
EVENTPROCESSINGEXIT option.

IPVCNF00 option EVENTPROCESSINGEXIT

Use the EventProcessingExit option to specify the name of the exit to be invoked to
process an event. For more information, see “EventProcessingExit” on page 13.

88 PD Tools Common Component Customization Guide and User Guide V1R7

The Event Processing user exit

The exit name that is specified in the IPVEPSND UsrPgm parameter must be a
fetchable LE function with the following format:
int exit_name(char *ProdID, char *BufPtr);

The ProdID and BufPtr are the same as specified for IPVEPSND.

The user exit load module must be available via the normal search path, that is,
JOBLIB, STEPLIB, LINKLIST, and so on.

The user exit is invoked in problem state, that is, key 8.

For ADFz family of products, the exit name is specified via the
EventProcessingExit option.

Example customer event processing user exit

The following code is a stub example of an exit written in C that can be specified
via the EVENTPROCESSINGEXIT option, named as IPVEPXIT.
#pragma linkage(IPVEPXIT, fetchable)

#include <string.h>

int IPVEPXIT(char *ProdID, char *BufPtr) {

if (!BufPtr) {
printf(“BufPtr is null! Exiting...\n”);
return;

}

if (strcmp(ProdID, "IDI")) {

//Event from Fault Analyzer has been detected.
//processFAEvent(BufPtr); ...

} else if (strcmp(ProdID, "FMN")) {

//Event from File Manager has been detected.
//processFMEvent(BufPtr); ...

} else if (strcmp(ProdID, "ABC")) {

//Event from application ABC has been detected.
//processABCEvent(BufPtr); ...

}
}

Chapter 10. PDTCC event processing 89

|

90 PD Tools Common Component Customization Guide and User Guide V1R7

Appendix A. Messages

Common Server messages
For the Common Server messages, selected batch messages are listed in
alphanumeric order. For each message, the information that is provided comprises:
v The message identifier.
v The text of the message.
v An explanation of the message.
v The required user response.

The messages that are issued have a unique alphanumeric identifier with the
format:
IPVnnnns

where:
nnnn Is a 4-digit number.
s Is a severity level indicator with the following meanings:

v I - Informational
v W - Warning
v S - Severe

IPV0001I Server on port %i exiting

Explanation: The server is finished processing. Either
errors occurred during startup, running, or the server is
responding to a shutdown command.

System action: The server finishes processing.

User response: If the shutdown was unexpected,
examine previous messages for the cause.

IPV0002I Error establishing SSL environment: %i

Explanation: An error occurred while establishing the
SSL environment.

System action: The PD TOOLS Common Component
Server attempts to continue.

User response: Examine previous messages for
reasons for environment failure. If previous messages
do not help, contact IBM support.

IPV0003S Console modify/stop interface failed
rc=%i, errno=%i error= %s

Explanation: An error occurred while establishing the
console interface.

System action: The PD TOOLS Common Component
Server exits.

User response: Examine the provided error for
reasons for failure. If previous messages do not help,
contact IBM support.

IPV0004I Number of configurations %i

Explanation: During start or configuration refresh, the
CONFIG data was read and the specified number of
configurations were recognized.

System action: None.

User response: If the number of configurations is
unexpected, check the CONFIG concatenations and
contents.

IPV0005I Config number %i startup %s

Explanation: During start or configuration refresh, the
configuration specified an initial program to run.

System action: None.

User response: None.

IPV0006W System call rc=%i error=%s

Explanation: A call to run a program according to a
configuration failed.

System action: None.

User response: None.

IPV0007W Expected a portnumber integer.
Received %s

Explanation: The server expects an integer
portnumber as the first parameter.

© Copyright IBM Corp. 2012, 2016 91

System action: The server attempts to continue
starting, using port 2800.

User response: Check the invocation parameter for the
server.

IPV0008W Expected AF_INET or AF_INET6.
Received %s

Explanation: The server expects the address family
type as the second parameter.

System action: The server attempts to continue
starting, using the AF_INET family.

User response: Check the invocation parameter for the
server.

IPV0009I Using address family %s.

Explanation: The server is using the specified address
family.

System action: None.

User response: None.

IPV0010I Using port %i.

Explanation: The server is using the specified port
number.

System action: None.

User response: None.

IPV0011S listen() error: %s

Explanation: The listen call failed with the specified
error.

System action: The server is shut down.

User response: Correct the listed error if possible and
restart the server.

IPV0012W Spawn failure for %s. Error: %s __errno2
= %08x

Explanation: The attempt to spawn the specified
program failed with the listed error and error code.

System action: The server continues to run.

User response: Examine the error and possibly
examine the CONFIG file ensuring that customization
occurred correctly.

IPV0013W Missing value for keyword '%s'

Explanation: While reading the CONFIG file, an
expected value for a keyword was missing.

System action: The server continues to run.

User response: Check the CONFIG file for the

specified keyword and specify an appropriate value.

IPV0014W Failure to acquire storage for
configuration instance %i

Explanation: While preparing configurations, a failure
to acquire storage occurred.

System action: The server attempts to continue to run.

User response: Check the REGION specification for
the server. Increase and restart the server.

IPV0015I PDTCC Server Running on port %i.

Explanation: Console message to indicate that the
server is now accepting connections.

System action: None.

User response: None.

IPV0016I Established SSL environment.

Explanation: The call to System SSL to initialize an
environment was successful.

System action: None.

User response: None.

IPV0017W Unable to create temporary file %s. %s

Explanation: The call to create a temporary file for a
configuration failed.

System action: The server attempts to continue,
however the configuration might be unusable.

User response: Examine the file path and error
condition as shown. Correct the configuration file or
update the directory permissions and restart or refresh
the server.

IPV0018W Unable to verify dsn %s

Explanation: The existence of data set %s in a
STEPLIB= value could not be verified.

System action: The server attempts to continue,
however the configuration might be unusable.

User response: Examine the named data set and
ensure that it is the correct name. If necessary, update
the configuration file and restart or refresh the server.

IPV0019W Unable to open CONFIG %s

Explanation: During startup, or a refresh command,
the DD CONFIG was unable to be opened.

System action: If this occurs during initial start of the
server, the server terminates. During a refresh, no new
configurations are loaded.

User response: Examine the error and the CONFIG

IPV0008W • IPV0019W

92 PD Tools Common Component Customization Guide and User Guide V1R7

data sets to ensure that they exist. If necessary, update
the configuration file and restart or refresh the server.

IPV0020I REFRESH completed, %i configs
processed.

Explanation: A REFRESH console command has now
completed. The server has re-read the configurations as
specified in the CONFIG DD.

System action: None.

User response: None.

IPV0021W REFRESH found errors in new configs,
not activated.

Explanation: A REFRESH console command was
issued, but during reading of the CONFIG DD, some
errors occurred.

System action: The server continues with its prior
configuration.

User response: Check the server output for possible
further information on the problems that are found in
the CONFIG file(s)

IPV0022S Creation of key database at %s failed,
error %s

Explanation: The configuration specifies that the
server create a certificate to be used, however an error
as described occurred when attempting to create the
key database.

System action: The server terminates.

User response: f the error is an IO error, check the
specified location for enough space (65KB). Otherwise,
check that the location is writeable. To specify an
alternate location, set the configuration keyword
WORKDIR to the directory to be used.

IPV0023S Creation of self-signed certificate failed,
error %s

Explanation: The configuration specifies that the
server create a certificate to be used, however an error
as described occurred when attempting to create the
self-signed certificate in the key database.

System action: The server terminates.

User response: Check the listed error and check
documentation for the gsk_create_self_signed_certificate
API.

IPV0024I Traceon received, trace already active.

Explanation: The Server received a modify command
to turn on tracing, but it is already on.

System action: None.

User response: None.

IPV0025I Traceon received, trace turned on.

Explanation: The Server received a modify command
to turn on tracing and has done so. Trace output goes
to the IPVTRACE file(DD) if present, or to the STDOUT
file if not.

System action: None.

User response: None.

IPV0026I Traceoff received, trace already off.

Explanation: The Server received a modify command
to turn off tracing but it is already off.

System action: None.

User response: None.

IPV0027I Traceoff received, trace turned off.

Explanation: The Server received a modify command
to turn off tracing and has done so.

System action: None.

User response: None.

IPV0028I Unrecognized modify command.

Explanation: The Server received a modify command,
but did not recognize it.

System action: None.

User response: Check that modify contained one of
the valid requests; TRACEON, TRACEOFF, VER or
REFRESH.

IPV0029W Client config name %s not found in
CONFIG DD content.

Explanation: The Server received a client connection
request for the named config, but no matching
CONFIG=name statement was found in the data that
was contained in the CONFIG DD concatenation.

System action: The client connection request is
refused.

User response: Check that the configurations
referenced by the CONFIG DD for the server, contain a
CONFIG=name section.

IPV0030I API start PID=processid

Explanation: A process (processid) launched by the
common server has invoked the common server
subordinate API to start the environment setup and
handshake with client.

System action: None.

IPV0020I • IPV0030I

Appendix A. Messages 93

User response: None.

IPV0031I API closure PID=processid

Explanation: A process has invoked the common
server subordinate API to close the environment setup
and client connection.

System action: None.

User response: None.

IPV0032I PDTCC Server Release=%s PTF=%s

Explanation: In response to the VER modify
command, the server lists its release and PTF level
information.

System action: None.

User response: None.

IPV0033W Unknown token %s with value %s for
CONFIG=%s

Explanation: While processing the configuration file,
an unrecognized token/value pair was found.

System action: The invalid token is ignored and
processing attempts to continue.

User response: Review the configuration file for the
named token. Look for a misspelling or incorrect token
or value.

IPV0041W Maximum user variables (500) reached
when processing token %s, value %s in
configuration %s

Explanation: The limit of substitution values has been
reached.

System action: The server attempts to continue,
however the configurations might be unusable.

User response: Examine the number of $token=value
pairs present in the configuration file and reduce to less
than 500.

IPV0042W Unable to stat file %s.

Explanation: The server is unable to check the
configuration launch file entry.

System action: The server attempts to continue,
however this launch configuration is unusable.

User response: Examine the file path and ensure that
the setup was completed correctly. Most likely the file
or directory path is not owned or correctly permitted in
order for this server instance to access the named file.
The WORKDIR configuration step of installation needs
to be checked and rerun.

IPV0043W Not owner of launch file %s.

Explanation: The server is not the owner of a
configuration launch file entry.

System action: The server attempts to continue,
however this launch configuration is unusable.

User response: Examine the file path and ensure that
the setup was completed correctly. Correct the
condition by ensuring that the file owner is updated to
the userid of the server. The file system that the file is
mounted on needs to allow SETUID for the owner to
be changed with the chmod command.

IPV0044W Launch file %s is not marked as sticky.

Explanation: A configuration launch file has not been
created correctly.

System action: The server attempts to continue,
however this launch configuration is unusable.

User response: Examine the file path and WORKDIR
location. If the WORKDIR is correct, the installation
configuration step for the WORKDIR might need to be
rerun.

IPV0031I • IPV0044W

94 PD Tools Common Component Customization Guide and User Guide V1R7

IPVLANGX messages
These messages are issued by the IPVLANGX program, which is used internally
by Fault Analyzer or invoked by the user when creating side files.

IDISF8001I IPVLANGX Version version (Release
release)

Explanation: This message shows the IPVLANGX
program identification, version, and release date.

System action: Processing continues.

User response: None

IDISF8002I Output file: member_name DDname

Explanation: This message identifies the file to which
the extract data information is written by IPVLANGX.

The member_name field is not included in the message if
using a sequential file.

System action: Processing continues.

User response: None

IDISF8003I ... scanning txt1

Explanation: This message indicates that the
information that was specified in txt1 is being read
from the associated file and processed.

System action: Processing continues.

User response: None

IDISF8004I ... checking txt1

Explanation: This message indicates that the
information t at was specified in txt1 is checked for
consistency.

System action: Processing continues.

User response: None

IDISF8005I txt1 Pass dec2 processing begins

Explanation: This message indicates pass dec2 of the
multi-pass processing task that is specified in txt1 is
now being performed.

System action: Processing continues.

User response: None

IDISF8006I Post-processing begins

Explanation: This message indicates that all necessary
information was read from the associated files, and
post-processing of this information is being performed.

System action: Processing continues.

User response: None

IDISF8007I ... matching txt1

Explanation: This message indicates that the
information that was specified in txt1 is now being
correlated.

System action: Processing continues.

User response: None

IDISF8008I ... performing txt1

Explanation: This message indicates that the
processing step specified in txt1 is now being
performed.

System action: Processing continues.

User response: None

IDISF8010I txt1 records scanned: dec2

Explanation: This message indicates that dec2 records
were read from the txt1 file when the current compile
unit was processed by IPVLANGX.

System action: Processing continues.

User response: None

IDISF8011I ...Symbols txt1.. dec2

Explanation: This message indicates that the current
compile unit contained dec2 symbols with
characteristics of type txt1

System action: Processing continues.

User response: None

IDISF8012I ...Long Name Resolution IDs: dec1

Explanation: This message indicates that the current
compile unit contained dec1 Long Name Resolution
Identifiers.

System action: Processing continues.

User response: None

IDISF8013I ...Total symbols: dec1

Explanation: This message indicates that the current
compile unit contained dec1 symbols.

System action: Processing continues.

User response: None

IDISF8014I Records written to output file: dec1

IDISF8001I • IDISF8014I

Appendix A. Messages 95

Explanation: This message shows the number of
records of extract data information which were written
to the output file.

System action: Processing continues.

User response: None

IDISF8015I Operation completed for this compile
unit

Explanation: Processing was completed for the current
compile unit.

System action: Processing continues if extra compile
units are present.

User response: None

IDISF8016I txt1 member_name DDname

Explanation: This message identifies the input file(s)
which were processed by IPVLANGX

The txt1 field is normally “Input file:” or “Input files:”.

The member_name field is not included in the message if
using a sequential file.

System action: Processing continues.

User response: None

IDISF8017I Operation completed for this extract file

Explanation: This message is the last message to be
displayed by IPVLANGX, and indicates that processing
is completed for this IPVLANGX extract data file.

System action: Processing has completed.

User response: None

IDISF8018I txt1 bytes scanned: dec2

Explanation: This message indicates that dec2 bytes of
data were read from the txt1 file when the current
compile unit was processed by IPVLANGX.

System action: Processing continues.

User response: None

IDISF8020I ...Blocks of dead code eliminated.......
dec1

Explanation: This message indicates that dec1 blocks
of code which had been removed by optimization by
the compiler have been identified. The source code and
variables that are associated with these blocks have
been eliminated from the extract data.

System action: Processing continues.

User response: None

IDISF8050W Argument missing for txt1 option. txt2

Explanation: The argument for IPVLANGX option
txt1 was not found during processing of the
IPVLANGX invocation parameters.

System action: The default argument for the txt1
option is assumed.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message
is issued during fault analysis, contact your IBM
service representative.

IDISF8051S Argument/Option too long, "txt1"

Explanation: The invocation parameter txt1 is not
recognized as a valid IPVLANGX argument (or option).
It exceeds the maximum length of a valid argument (or
option), and might be spelled incorrectly.

System action: Processing is terminated.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message
is issued during fault analysis, contact your IBM
service representative.

IDISF8052S Argument/Option not recognized, "txt1"

Explanation: The invocation parameter txt1 is not
recognized as a valid IPVLANGX argument (or option).

System action: Processing is terminated.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message
is issued during fault analysis, contact your IBM
service representative.

IDISF8055S A left parenthesis was found inside
options

Explanation: An extra left parenthesis (after the initial
left parenthesis which signals the start of the
IPVLANGX options) was encountered during
processing of the IPVLANGX invocation parameters.

System action: Processing is terminated.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message
is issued during fault analysis, contact your IBM
service representative.

IDISF8015I • IDISF8055S

96 PD Tools Common Component Customization Guide and User Guide V1R7

IDISF8056S No file name was specified

Explanation: The PDS or PDSE data set member name
of the primary program information file from which
source and variable data is to be extracted was not
found during processing of the IPVLANGX invocation
parameters.

System action: Processing is terminated.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message
is issued during fault analysis, contact your IBM
service representative.

IDISF8057S Argument/Option already specified,
"txt1"

Explanation: The argument (or option) txt1 was
encountered more than once during processing of the
IPVLANGX invocation parameters.

System action: Processing is terminated.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message
is issued during fault analysis, contact your IBM
service representative.

IDISF8058S Argument/Option "txt1" conflicts with
previous Argument/Option

Explanation: A conflict between the argument (or
option) txt1 and another previously specified argument
(or option) was detected during processing of the
IPVLANGX invocation parameters.

System action: Processing is terminated.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message
is issued during fault analysis, contact your IBM
service representative.

IDISF8059I Application language not specified,
option "txt1" assumed

Explanation: In the absence of an IPVLANGX option
which explicitly specifies the application programming
language, the IPVLANGX option txt1 was assumed.

System action: Processing continues.

User response: If you are using IPVLANGX directly to
create a side file, specify the invocation options as
explained in Chapter 6, “IPVLANGX compiler listing to
side file conversion utility,” on page 69. If the message

is issued during fault analysis, contact your IBM
service representative.

IDISF8100S txt1 contains NO recognized records

Explanation: The input file that was identified in txt1
did not contain the expected records. This could
happen if, for example, the IDIADATA DDname was
accidentally directed at a compiler listing data set.

System action: Processing is terminated.

User response: Ensure that the input file that was
used is correct.

IDISF8103S txt1 has unrecognized records following
last valid section

Explanation: The input file for IPVLANGX (the
compiler listing) contains more output than just from
the compile step. That is, there might be precompiler or
postcompiler output, such as from a DB2 precompiler
step or a link-edit step. Once this information is
removed, the message is no longer be produced and
the side file should be created as expected.

System action: Processing is terminated.

User response: Ensure that the input file that was
used is correct.

IDISF8110W Compiler option(s) incorrectly specified

Explanation: The format of the input file is insufficient
for IPVLANGX processing because one or more of the
required compiler options have not been specified.

System action: Processing is terminated.

User response: Recompile the module with the
required compiler options as specified in “Preparing
your programs” on page 19.

IDISF8114S txt1 required for source support - fatal

Explanation: txt1 specifies the compiler options that
are required for a successful IPVLANGX execution.
Source code information cannot be complete without
these options. This message might be preceded by
message IDISF8110W.

System action: Processing is terminated.

User response: Recompile the module with the
required compiler options as specified in “Preparing
your programs” on page 19.

IDISF8115W txt1 required for symbol support

Explanation: txt1 specifies the compiler options that
are required for a successful IPVLANGX execution.
Source code information cannot be complete without
these options. This message is preceded by message
IDISF8110W.

IDISF8056S • IDISF8115W

Appendix A. Messages 97

System action: Processing continues, however, the
analysis report might be missing information.

User response: Recompile the module with the
required compiler options as specified in “Preparing
your programs” on page 19.

IDISF8116W txt1 required for structure/union support

Explanation: txt1 specifies the compiler options that
are required for a successful IPVLANGX execution.
Source code information cannot be complete without
these options. This message is preceded by message
IDISF8110W.

System action: Processing continues, however, the
analysis report might be missing information.

User response: Recompile the module with the
required compiler options as specified in “Preparing
your programs” on page 19.

IDISF8120W txt1 detected. txt2 option assumed

Explanation: The format of the input file indicates that
the specified option is no longer in effect.

System action: Processing continues, assuming an
appropriate option to match the format of the input
file.

User response: Use the correct compiler option, or
make the compiler directive which adjusted the
compiler option visible to IPVLANGX, as appropriate.
If the problem persists, contact your IBM service
representative.

IDISF8130S File not found "txt1"

Explanation: The IPVLANGX input compiler listing or
SYSADATA file txt1 could not be found to allow
IPVLANGX processing to begin.

System action: Processing is terminated.

User response: Correct the file specification, or make
the file available to IPVLANGX, as appropriate. If the
problem persists, contact your IBM service
representative.

IDISF8131S Files not found "txt1", and "txt2"

Explanation: The IPVLANGX extract data file could
not be found using either the primary file identifier
txt1, or the alternative file identifier txt2 to allow
IPVLANGX processing to begin.

System action: Processing is terminated.

User response: Correct the file specification, or make
the file available to IPVLANGX, as appropriate. If the
problem persists, contact your IBM service
representative.

IDISF8132S Input or Output file format invalid

Explanation: The attributes or contents of a file have
been found to be inappropriate, during IPVLANGX
processing.

One or more preceding messages identify the file which
was being processed when the error occurred or the
reason for the failure. Reasons for this message might
be error messages in the input compiler listing or
missing required compiler options. For details on
required compiler options, refer to “Preparing your
programs” on page 19.

System action: Processing is terminated.

User response: Correct the problem that was
identified in the preceding message. If the problem
persists, contact your IBM service representative.

IDISF8133S File DD not allocated "txt1"

Explanation: The Data Definition (DD) for the txt1 file
was found to be unallocated.

System action: Processing is terminated.

User response: Allocate the file, using a JCL DD
statement, or TSO ALLOCATE statement, as
appropriate. If the problem persists, contact your IBM
service representative.

IDISF8134S File DDs not allocated "txt1", and "txt2"

Explanation: The Data Definitions (DDs) for both the
primary txt1 file and the alternative txt2 file were
found to be unallocated.

System action: Processing is terminated.

User response: Allocate the file, using a JCL DD
statement, or TSO ALLOCATE statement, as
appropriate. If the problem persists, contact your IBM
service representative.

IDISF8135S txt1 file incorrectly defined

Explanation: The attributes of the txt1 file have been
examined, and found to be inappropriate.

System action: Processing is terminated.

User response: Ensure that the correct data set was
specified in the txt1 file allocation. If the correct data
set was specified, the data set was allocated with
incorrect attributes, in which case it must be
reallocated. If the problem persists, contact your IBM
service representative.

IDISF8136S Premature txt1 End-of-File encountered

Explanation: IPVLANGX had begun scanning the txt1
file data, but the file ended before all expected data
records had been scanned.

IDISF8116W • IDISF8136S

98 PD Tools Common Component Customization Guide and User Guide V1R7

System action: Processing is terminated.

User response: Ensure that the correct data set was
specified in the txt1 file allocation. If the correct data
set was specified, the file might have been truncated
and must be replaced with the complete data. If the
problem persists, contact your IBM service
representative.

IDISF8137S txt1 disk/directory is full

Explanation: There is insufficient space to write
further records to the txt1 file.

This might be caused by :

v PDS directory has no free entries

v data set has maximum number of extents

v insufficient free space on the DASD volume for
another extent

System action: Processing is terminated.

User response: Determine the resource which is
exhausted, and correct as appropriate. If the problem
persists, contact your IBM service representative.

IDISF8138T Insufficient virtual memory available

Explanation: There is insufficient free storage for
IPVLANGX to continue processing.

System action: Processing is terminated.

User response: Free up virtual storage which is in use,
or make more virtual storage available, as appropriate.
If the problem persists, contact your IBM service
representative.

Note: IPVLANGX uses storage above the 16MB line, if
it is available.

IDISF8139S File is TERSEd or PACKed "txt1"

Explanation: The specified file was found to have a
Fixed record format, and 1024-byte record length. It
was likely compressed using TERSE or COPYFILE.

System action: Processing is terminated.

User response: Restore the file to its original format,
using the appropriate utility program. If the problem
persists, contact your IBM service representative.

IDISF8150T Maximum number of symbols exceeded

Explanation: The maximum number of symbols that a
single compile unit can contain is 65534. This limit is
exceeded by the current compile unit.

System action: Processing is terminated.

User response: Reduce the number of symbols below
the limit. If the problem persists, contact your IBM
service representative.

IDISF8152W Incomplete info for symbol "txt1" (ident:
dec2)

Explanation: During the extraction process, complete
information was not available for the symbol shown.
The extract data for unrelated symbols and program
source is not affected.

System action: Processing continues.

User response: Use IPVLANGX to format the extract
data, and determine the missing information. Given
this, examine the IPVLANGX input file(s) and
determine the cause of the problem. If the problem
persists, contact your IBM service representative.

IDISF8158T Invalid COBOL source column
indicators - fatal

Explanation: Expected source column indicators were
not found in the COBOL listing.

System action: Processing is terminated.

User response: Check if the attributes of file read have
changed from those of the original compiler listing file.

IDISF8231S Missing txt1 ESD information

Explanation: The name of a CSECT could not be
determined.

System action: Processing continues but analysis
might be incomplete.

User response: Ensure that CSECTs are named in
accordance with the requirements in “Preparing your
programs” on page 19.

IDISF8233S Unable to determine identity of
unnamed PC Section

Explanation: The name of a CSECT could not be
determined.

System action: Processing continues but analysis
might be incomplete.

User response: Ensure that CSECTs are named in
accordance with the requirements in “Preparing your
programs” on page 19.

IDISF8250A SYSADATA input record record-number,
invalid ESDID ignored

Explanation: An invalid ESDID was encountered on a
SYSADATA record read. The ESDID was ignored.

System action: Processing continues.

User response: None.

IDISF8137S • IDISF8250A

Appendix A. Messages 99

IPVLANGX return codes
The following return codes are issued by IPVLANGX:

RC Meaning

0 Operation successful, output file was written.

0xxx Error was discovered while parsing arguments/options. xxx can have these
values:

1 Token too long

2 Left parenthesis found inside options

3 Unknown option

1xyy or 2xyy
Error occurred during scan of compiler listing or SYSADATA file.

3xyy Error occurred while writing output file.

For return codes 1xyy, 2xyy, and 3xyy, the values for xyy are:

0yy yy is the return code from the file WRITE routine

1yy yy is the return code from the file OPEN routine

2yy yy is the return code from the file READ routine

3yy yy is the return code from the file WRITE routine

4yy yy is the return code from the file POINT routine

5yy yy is the return code from the memory ALLOCATE routine

6yy yy is the return code from the memory FREE routine

7yy yy is the return code from the file CLOSE routine

8yy yy is the return code from the file NOTE routine

Examples of IPVLANGX return codes
0310 Compiler listing file is not in the expected format. A possible reason is that

the required compiler options have not been used.

1128 Input compiler listing file could not be found. A possible reason is that a
member name of a PDS(E) data set has not been specified, either in the
parameters for IPVLANGX, or added to the data set name of the PDS(E).

3128 Output IPVLANGX file could not be found, or the attributes of an existing
file do not match those required by IPVLANGX (RECFM=VB and
LRECL≥1562).

3315 One or more records that were written to IPVLANGX were truncated due
to insufficient logical record length. The minimum required logical record
length for the IPVLANGX data set is 1562 bytes. Unpredictable results
might occur if attempting to use the truncated side file as input.

IPVLANGX return codes

100 PD Tools Common Component Customization Guide and User Guide V1R7

Appendix B. Troubleshooting

Error scenarios and tracing
If the installed library has not been added to program control, this message
appears in the JESMSGLG for the server task:
ICH420I PROGRAM IPVSRV FROM LIBRARY IPV.V1R6M0.SIPVMODA CAUSED
THE ENVIRONMENT TO BECOME UNCONTROLLED. BPXP014I ENVIRONMENT MUST
BE CONTROLLED FOR SERVER (BPX.SERVER) PROCESSING.

Messages similar to the following might be generated if the user connecting to the
server does not have read access to the SIPVMODA library:
ICH408I USER(VIKRAMM) GROUP(USERCOD) NAME(MANCHALA, VIKRAM) 218
IPV.V160.SIPVMODA CL(DATASET) VOL(COD035)
INSUFFICIENT ACCESS AUTHORITY
FROM IPV.V160.* (G)
ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
IEC150I 913-38,IFG0194E,VIKRAMM,OS390,ISP19502,8E10,COD035,IPV.V160.SIPVMODA

Messages on SYSLOG at the time of attempted connection, like the ones that are
shown here, are generated when the relevant CONFIG contains an invalid library,
or is missing a library from the SPAWN_STEPLIB statement:
IEA995I SYMPTOM DUMP OUTPUT
SYSTEM COMPLETION CODE=EC6 REASON CODE=0B26C032
TIME=11.37.04 SEQ=38113 CPU=0000 ASID=00ED
PSW AT TIME OF ERROR 070C3000 82C44CE8 ILC 2 INTC 0D
NO ACTIVE MODULE FOUND
NAME=UNKNOWN
DATA AT PSW 02C44CE2 - C06C18F2 0A0D41B0 D4D0180B
AR/GR 0: 00000000/00000026_00000648 1: 00000000/00000000_04EC6000

2: 01FF000C/00000000_0B26C032 3: 00000000/00000000_8286F5B8
4: 00000000/00000000_00000000 5: 00000000/00000000_00000000
6: 01FF000C/00000000_00000700 7: 01FF000C/00000000_09BFC3F8
8: 00000000/00000000_11F4B610 9: 00000000/00000000_163031FF
A: 00000000/00000000_11F4B610 B: 01FF000C/00000000_7FFC3A00
C: 00000000/00000000_02C47AC0 D: 00000000/00000000_16302200
E: 00000000/00000000_82C44CB0 F: 00000000/00000000_0B26C032

END OF SYMPTOM DUMP

If the above are not occurring, but connections are still not successful, shutdown
the server and start it again with tracing active. If using the supplied sample, this
can be done on the start command. For example, S IPVSRV,TRACE=D. This
produces trace entries in the server task on the IPVTRACE DD.

A typical trace, with SSL active, before connections are made, looks similar to the
one shown here. The main entries of interest confirming startup was successful are
highlighted:
2012-04-10-10:54:39.442 [IPVSRV:266] Server built at: Apr 10 2012 10:54:03
2012-04-10-10:54:39.601 [IPVSRV:952] Record in length:1903
2012-04-10-10:54:39.601 [IPVSRV:969] Token: CONFIG Value: DEFAULT
2012-04-10-10:54:39.601 [IPVSRV:989] Config DEFAULT allocated.
2012-04-10-10:54:39.601 [IPVSRV:969] Token: SSL_REQUIRED Value: YES
2012-04-10-10:54:39.601 [IPVSRV:969] Token: WORKDIR Value: /etc/ipv/v17/ipvsrv1
2012-04-10-10:54:39.602 [IPVSRV:1070] Confirmed temporary write access ok dir=/etc/ipv/v17/ipvsrv1.
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_STEPLIB Value: IPV16SVC.SOPERW.LOAD ...
2012-04-10-10:54:39.602 [IPVSRV:969] Token: CONFIG Value: FM
2012-04-10-10:54:39.602 [IPVSRV:989] Config FM allocated.
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_PROGRAM Value: FMNCSEP
2012-04-10-10:54:39.602 [IPVSRV:1089] Creating temp filename.
2012-04-10-10:54:39.602 [IPVSRV:1106] Created temporary spawn image file ok.
2012-04-10-10:54:39.602 [IPVSRV:1116] spawn_program /etc/ipv/v17/ipvsrv1/FMNCSEP
2012-04-10-10:54:39.602 [IPVSRV:1117] spawn_fn FMNCSEP

© Copyright IBM Corp. 2012, 2016 101

2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_JOBNAME Value: FMCLIENT
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_STEPLIB Value: FMN.V12R1M0.OPTIONS...
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_PARMS_SECTION Value:
2012-04-10-10:54:39.602 [IPVSRV:969] Token: CONFIG Value: UTPLX
2012-04-10-10:54:39.602 [IPVSRV:989] Config UTPLX allocated.
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_PROGRAM Value: IPVPSAMP
2012-04-10-10:54:39.602 [IPVSRV:1089] Creating temp filename.
2012-04-10-10:54:39.602 [IPVSRV:1106] Created temporary spawn image file ok.
2012-04-10-10:54:39.602 [IPVSRV:1116] spawn_program /etc/ipv/v17/ipvsrv1/IPVPSAMP
2012-04-10-10:54:39.602 [IPVSRV:1117] spawn_fn IPVPSAMP
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_STEPLIB Value: FMN12SVC...
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_PARMS_SECTION Value:
2012-04-10-10:54:39.602 [IPVSRV:969] Token: CONFIG Value: UTCAPI
2012-04-10-10:54:39.602 [IPVSRV:989] Config UTCAPI allocated.
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_PROGRAM Value: IDIGMAIN
2012-04-10-10:54:39.602 [IPVSRV:1089] Creating temp filename.
2012-04-10-10:54:39.602 [IPVSRV:1106] Created temporary spawn image file ok.
2012-04-10-10:54:39.602 [IPVSRV:1116] spawn_program /etc/ipv/v17/ipvsrv1/IDIGMAIN
2012-04-10-10:54:39.602 [IPVSRV:1117] spawn_fn IDIGMAIN
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_STEPLIB Value: FMN12SVC...
2012-04-10-10:54:39.602 [IPVSRV:969] Token: SPAWN_PARMS_SECTION Value:
2012-04-10-10:54:40.495 [IPVSRV:1956] Environment open rc=0 Handle=16AB09A8 Ha=16AA6490
2012-04-10-10:54:40.495 [IPVSRV:1965] Set SSLV2 off rc=0
2012-04-10-10:54:40.495 [IPVSRV:1973] Set SSLV3 off rc=0
2012-04-10-10:54:40.495 [IPVSRV:1982] Set TLSV1 on rc=0
2012-04-10-10:54:40.495 [IPVSRV:1997] Certfile=/etc/ipv/v17/ipvsrv1/IPVSRVC3-IPVCERT.kdb
2012-04-10-10:54:40.495 [IPVSRV:1998] Set keyring rc=0
2012-04-10-10:54:40.495 [IPVSRV:2006] Set pw rc=0
2012-04-10-10:54:40.511 [IPVSRV:2014] Environment init rc=0 Handle=16AB09A8
2012-04-10-10:54:40.511 [IPVSRV:281] Mixed case password support is off
2012-04-10-10:54:40.512 [IPVSRV:1902] Set socket linger rc=0
2012-04-10-10:54:40.512 [IPVSRV:1906] Set socket reuseaddr rc=0
2012-04-10-10:54:40.512 [IPVSRV:1910] Set socket keepalive rc=0
2012-04-10-10:54:40.512 [IPVSRV:301] Launching accept thread socket 0, listen code 0
2012-04-10-10:54:40.512 [IPVSRV:513] Acceptor thread running.
2012-04-10-10:54:40.512 [IPVSRV:527] About to accept.

If the highlighted statements are similar to the example that is shown here, all
rc=0, then try to connect.

Several trace entries that are created by the server are similar to the ones that are
shown here. Again, those that are of interest are highlighted.
2012-04-10-10:55:02.943 [IPVSRV:543] Connect received.
2012-04-10-10:55:02.943 [IPVSRV:549] Set client socket linger rc=0
2012-04-10-10:55:02.944 [IPVSRV:570] Thread launch
2012-04-10-10:55:02.944 [IPVSRV:527] About to accept.
2012-04-10-10:55:02.944 [IPVSRV:428] Conversation thread started.
2012-04-10-10:55:02.944 [IPVSRV:451] Server and peer on different hosts.
2012-04-10-10:55:02.944 [IPVSRV:1461] Outgoing message length=111, message=SSL=Y,
SERVERVERSION=01.01,SERVERNAME=IPVSRVC3,SYSNAME=z/OS,NODENAME=FMD2,
RELEASE=11.00,VERSION=01,MACHINE=2094
2012-04-10-10:55:02.944 [IPVSRV:1524] Sent 115 bytes
2012-04-10-10:55:02.945 [IPVSRV:2028] gsk_secure_socket_open rc=0
2012-04-10-10:55:02.945 [IPVSRV:2040] Set native socket rc=0
2012-04-10-10:55:02.945 [IPVSRV:2049] Set keyring label PDTCC Server Certificate rc=0
2012-04-10-10:55:02.945 [IPVSRV:2058] Set session type rc=0
2012-04-10-10:55:03.980 [IPVSRV:2081] Secure socket init rc=0
2012-04-10-10:55:03.980 [IPVSRV:1328] RecvSSL
2012-04-10-10:55:04.191 [IPVSRV:1360] Header indicates length 50
2012-04-10-10:55:04.722 [IPVSRV:1423] Incoming message: >>user=SOPERW3 pass=AXXXXXXX
config=UTCAPI DEBUG=YES<<
2012-04-10-10:55:04.723 [IPVSRV:1640] Uppercasing password 8 chars
2012-04-10-10:55:04.723 [IPVSRV:588] process_launch trying to match config UTCAPI.
2012-04-10-10:55:04.723 [IPVSRV:657] Parms: SOCKETH=00000001
2012-04-10-10:55:04.723 [IPVSRV:658] Steplib: STEPLIB=IPV16SVC ...
2012-04-10-10:55:04.723 [IPVSRV:1828] Authenticated ok for user SOPERW3.
2012-04-10-10:55:04.724 [IPVSRV:1461] Outgoing message length=7, message=AUTH=Y
2012-04-10-10:55:04.724 [IPVSRV:1524] Sent 11 bytes
2012-04-10-10:55:05.282 [IPVSRV:702] gsk_secure_socket_close okay
2012-04-10-10:55:05.285 [IPVSRV:739] Spawned /etc/ipv/v17/ipvsrv1/IDIGMAIN Process 83886421
2012-04-10-10:55:05.285 [IPVSRV:745] Close client sock rc=0

If the Spawned trace line is present, check the SYSLOG at the time of the spawn
for any messages that are issued by a started task. If there are no log messages,
then look for output that is produced by the spawned user. For instance, in the
example that is shown here, the user SOPERW3 has generated some output. Once
you have this information, and the servers IPVTRACE output, contact IBM
support.

102 PD Tools Common Component Customization Guide and User Guide V1R7

Support resources and problem-solving information

This section shows you how to quickly locate information to help answer your
questions and solve your problems. If you have to call IBM support, this section
provides information that you need to provide to the IBM service representative to
help diagnose and resolve the problem.

For a comprehensive multimedia overview of IBM software support resources, see
the IBM Education Assistant presentation “IBM Software Support Resources for
System z Enterprise Development Tools and Compilers products” at
http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/
com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/
player.html.
v “Searching IBM support Web sites for a solution”
v “Obtaining fixes” on page 104
v “My Notifications” on page 105
v “Receiving support updates through RSS feeds” on page 106
v “If you need to contact IBM Software Support” on page 106

Searching IBM support Web sites for a solution
You can search the available knowledge bases to determine whether your problem
was already encountered and is already documented.
v “Searching the information center”
v “Searching product support documents”
v “IBM Support Assistant” on page 104

Searching the information center
You can find this publication and documentation for many other products in the
IBM System z Enterprise Development Tools & Compilers information center at
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp. Using the
information center, you can search product documentation many ways. You can
search across the documentation for multiple products, search across a subset of
the product documentation that you specify, or search a specific set of topics that
you specify within a document. Search terms can include exact words or phrases,
wild cards, and Boolean operators.

To learn more about how to use the search facility that is provided in the IBM
System z Enterprise Development Tools & Compilers information center, you can
view the multimedia presentation at http://publib.boulder.ibm.com/infocenter/
pdthelp/v1r1/index.jsp?topic=/com.ibm.help.doc/InfoCenterTour800600.htm.

Searching product support documents
Use the System z Enterprise Development Tools & Compilers information center or
the IBM support site at www.ibm.com/software/support to search for the latest,
most complete information that might help you resolve your problem.

When you access the IBM support site, you can specify any of the following
products for which you want information to be displayed:

© Copyright IBM Corp. 2012, 2016 103

http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/player.html
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=/com.ibm.help.doc/InfoCenterTour800600.htm
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=/com.ibm.help.doc/InfoCenterTour800600.htm
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://www.ibm.com/software/support

v Application Performance Analyzer for z/OS
v Debug Tool for z/OS
v Enterprise COBOL for z/OS
v Enterprise PL/I for z/OS
v Fault Analyzer for z/OS
v File Manager for z/OS
v Optim Move for DB2
v WebSphere Developer Debugger for System z
v Workload Simulator for z/OS and OS/390 Support

When you access the IBM support site, you can also use the IBM Support Portal to
customize the support information to be displayed and save product names that
you specify. There is also a search facility provided with the IBM Support Portal
that allows you to narrow the search scope and search only product support
documents for the products that you specify. The IBM Support Portal can be
accessed through the IBM support site at www.ibm.com/software/support or
directly at www.ibm.com/support/entry/portal. For information about
customizing your IBM support site experience using the IBM Support Portal, refer
to https://www.ibm.com/blogs/SPNA/entry/
the_ibm_support_portal_videos?lang=en_us.

IBM Support Assistant
The IBM Support Assistant (also referred to as ISA) is a free local software
serviceability workbench that helps you resolve questions and problems with IBM
software products. It provides quick access to support-related information. You can
use the IBM Support Assistant to help you in the following ways:
v Search through IBM and non-IBM knowledge and information sources across

multiple IBM products to answer a question or solve a problem.
v Find more information through product and support pages, customer news

groups and forums, skills and training resources and information about
troubleshooting and commonly asked questions.

In addition, you can use the built-in Updater facility in IBM Support Assistant to
obtain IBM Support Assistant upgrades and new features to add support for
software products and capabilities as they become available.

For more information, and to download and start using the IBM Support Assistant
for IBM System z Enterprise Development Tools & Compilers products, visit
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&dc=D600
&uid=swg21242707&loc=en_US&cs=UTF-8&lang=en.

General information about the IBM Support Assistant can be found on the IBM
Support Assistant home page at http://www.ibm.com/software/support/isa.

Obtaining fixes
A product fix might be available to resolve your problem. To determine what fixes
and other updates are available, the following information is available from the
IBM support site. You can also view the following information from the IBM
Support Portal when you specify the applicable products.
v Latest PTFs for Application Performance Analyzer for z/OS
v Latest PTFs for Debug Tool for z/OS

104 PD Tools Common Component Customization Guide and User Guide V1R7

http://www.ibm.com/software/support
http://www.ibm.com/support/entry/portal
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos?lang=en_us
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos?lang=en_us
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&dc=D600&uid=swg21242707&loc=en_US&cs=UTF-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&dc=D600&uid=swg21242707&loc=en_US&cs=UTF-8&lang=en
http://www.ibm.com/software/support/isa

v Latest PTFs for Fault Analyzer for z/OS
v Latest PTFs for File Export for z/OS
v Latest PTFs for File Manager for z/OS
v Latest fixes for Optim Move for DB2
v Latest PTFs for WebSphere Studio Asset Analyzer for Multiplatforms
v Latest PTFs for Workload Simulator for z/OS and OS/390

When you find a fix that you are interested in, click the name of the fix to read its
description and to optionally download the fix.

The IBM Support Portal is a way for you to specify specific products for which
you want to display support information. The Support Portal can be accessed
through the IBM support site at www.ibm.com/software/support or directly at
www.ibm.com/support/entry/portal. For information about how to customize
your IBM support site experience using the IBM Support Portal, refer to
https://www.ibm.com/blogs/SPNA/entry/
the_ibm_support_portal_videos?lang=en_us.

For more information about the types of fixes that are available, see the IBM
Software Support Handbook at http://techsupport.services.ibm.com/guides/
handbook.html.

My Notifications
With My Notifications, you can subscribe to Support updates for any IBM product.
You can specify that you want to receive daily or weekly email announcements.
You can specify what type of information you want to receive (such as
publications, hints and tips, product flashes (also known as alerts), downloads, and
drivers). My Notifications enables you to customize and categorize the products
about which you want to be informed and the delivery methods that best suit your
needs.

To subscribe to Support updates, follow the steps below.
1. Click My notifications to get started. Click Subscribe now! on the page.
2. Sign in My notifications with your IBM ID. If you do not have an IBM ID,

create one ID by following the instructions.
3. After you sign in My notifications, enter the name of the product that you want

to subscribe in the Product lookup field. The look-ahead feature lists products
matching what you typed. If the product does not appear, use the Browse for a
product link.

4. Next to the product, click the Subscribe link. A green check mark is shown to
indicate the subscription is created. The subscription is listed under Product
subscriptions.

5. To indicate the type of notices for which you want to receive notifications, click
the Edit link. To save your changes, click the Submit at the bottom of the page.

6. To indicate the frequency and format of the email message you receive, click
Delivery preferences. Then, click Submit.

7. Optionally, you can click the RSS/Atom feed by clicking Links. Then, copy and
paste the link into your feeder.

8. To see any notifications that were sent to you, click View.

Support resources and problem-solving information 105

http://www.ibm.com/software/support
http://www.ibm.com/support/entry/portal
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos?lang=en_us
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos?lang=en_us
http://techsupport.services.ibm.com/guides/handbook.html
http://techsupport.services.ibm.com/guides/handbook.html
http://www-01.ibm.com/software/support/einfo.html

Receiving support updates through RSS feeds
To receive RSS feeds about fixes and other software support news, go to the
following web site and select the products in which you are interested:
v http://www.ibm.com/software/support/rss/other/index.html.

If you need to contact IBM Software Support
IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. The type of software maintenance contract that you need depends on the
type of product you have:
v For IBM distributed software products (including, but not limited to, Tivoli®,

Lotus®, and Rational® products, as well as DB2 and WebSphere® products that
run on Windows, or UNIX operating systems), enroll in Passport Advantage® in
one of the following ways:

Online
Go to the Passport Advantage Web site at http://www.lotus.com/
services/passport.nsf/ WebDocs/Passport_Advantage_Home and click
How to Enroll.

By phone
For the phone number to call in your country, go to the IBM Software
Support Web site at http://techsupport.services.ibm.com/guides/
contacts.html and click the name of your geographic region.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at https://techsupport.services.ibm.com/ssr/
login.

v For customers with IBMLink, CATIA, Linux, S/390®, iSeries, pSeries, zSeries,
and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the contacts page of the IBM Software Support Handbook on the Web at
http://techsupport.services.ibm.com/guides/contacts.html and click the name of
your geographic region for phone numbers of people who provide support for
your location.

To contact IBM Software support, follow these steps:
1. “Determining the business impact” on page 107
2. “Describing problems and gathering information” on page 107
3. “Submitting problems” on page 108

106 PD Tools Common Component Customization Guide and User Guide V1R7

http://www.ibm.com/software/support/rss/other/index.html
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://techsupport.services.ibm.com/guides/contacts.html
http://techsupport.services.ibm.com/guides/contacts.html
https://techsupport.services.ibm.com/ssr/login
https://techsupport.services.ibm.com/ssr/login
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/techsupport.html
http://techsupport.services.ibm.com/guides/contacts.html

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level.
Therefore, you need to understand and assess the business impact of the problem
that you are reporting. Use the following criteria:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little
impact on operations, or a reasonable circumvention to the problem was
implemented.

Describing problems and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently.

To save time, if there is a Mustgather document available for the product, refer to
the Mustgather document and gather the information specified. Mustgather
documents contain specific instructions for submitting your problem to IBM and
gathering information needed by the IBM support team to resolve your problem.
To determine if there is a Mustgather document for this product, go to the product
support page and search on the term Mustgather. At the time of this publication,
the following Mustgather documents are available:
v Mustgather: Read first for problems that are encountered with Application

Performance Analyzer for z/OS: http://www.ibm.com/support/
docview.wss?rs=2300&context=SSFMHB&q1=mustgather&uid=swg21265542
&loc=en_US&cs=utf-8⟨=en

v Mustgather: Read first for problems that are encountered with Debug Tool for
z/OS: http://www.ibm.com/support/docview.wss?rs=615&context=SSGTSD
&q1=mustgather&uid=swg21254711&loc=en_US&cs=utf-8&lang=en

v Mustgather: Read first for problems that are encountered with Fault Analyzer
for z/OS:http://www.ibm.com/support/docview.wss?rs=273&context=SSXJAJ
&q1=mustgather&uid=swg21255056&loc=en_US&cs=utf-8&lang=en

v Mustgather: Read first for problems that are encountered with File Manager for
z/OS: http://www.ibm.com/support/docview.wss?rs=274&context=SSXJAV
&q1=mustgather&uid=swg21255514&loc=en_US&cs=utf-8&lang=en

v Mustgather: Read first for problems that are encountered with Enterprise
COBOL for z/OS: http://www.ibm.com/support/docview.wss?rs=2231
&context=SS6SG3&q1=mustgather&uid=swg21249990&loc=en_US&cs=utf-8
&lang=en

v Mustgather: Read first for problems that are encountered with Enterprise PL/I
for z/OS: http://www.ibm.com/support/docview.wss?rs=619&context=SSY2V3
&q1=mustgather&uid=swg21260496&loc=en_US&cs=utf-8&lang=en

Support resources and problem-solving information 107

http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&q1=mustgather&uid=swg21265542&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&q1=mustgather&uid=swg21265542&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&q1=mustgather&uid=swg21265542&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=615&context=SSGTSD&q1=mustgather&uid=swg21254711&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=615&context=SSGTSD&q1=mustgather&uid=swg21254711&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=273&context=SSXJAJ&q1=mustgather&uid=swg21255056&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=273&context=SSXJAJ&q1=mustgather&uid=swg21255056&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=274&context=SSXJAV&q1=mustgather&uid=swg21255514&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=274&context=SSXJAV&q1=mustgather&uid=swg21255514&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2231&context=SS6SG3&q1=mustgather&uid=swg21249990&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2231&context=SS6SG3&q1=mustgather&uid=swg21249990&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2231&context=SS6SG3&q1=mustgather&uid=swg21249990&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=619&context=SSY2V3&q1=mustgather&uid=swg21260496&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=619&context=SSY2V3&q1=mustgather&uid=swg21260496&loc=en_US&cs=utf-8&lang=en

If the product does not have a Mustgather document, provide answers to the
following questions:
v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you change to the system? For example, did you change the hardware,

operating system, or networking software.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submitting problems
You can submit your problem to IBM Software Support in one of two ways:

Online
Click Open service request on the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html. In the Other
support tools section, select IBMLink to open an Electronic Technical
Response (ETR). Enter your information into the appropriate problem
submission form.

By phone
Call 1-800-IBMSERV (1-800-426-7378) in the United States, or from other
countries go to the contacts page of the IBM Software Support Handbook at
http://techsupport.services.ibm.com/guides/contacts.html and click the
name of your geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
Software Support Web site daily, so that other users who experience the same
problem can benefit from the same resolution.

After a Problem Management Record (PMR) is open, you can submit diagnostic
MustGather data to IBM by using one of the following methods:
v FTP diagnostic data to IBM
v If FTP is not possible, email diagnostic data to techsupport@mainz.ibm.com. You

must add PMR xxxxx bbb ccc in the subject line of your email. xxxxx is your
PMR number, bbb is your branch office, and ccc is your IBM country code. Click
here http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html for more
details.

Always update your PMR to indicate that data was sent. You can update your
PMR online or by phone as described above.

108 PD Tools Common Component Customization Guide and User Guide V1R7

http://www.ibm.com/software/support/probsub.html
http://techsupport.services.ibm.com/guides/contacts.html
http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2016 109

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA
95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Notices

110 PD Tools Common Component Customization Guide and User Guide V1R7

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows: ©(your company name) (year). Portions of
this code are derived from IBM Corp. Sample Programs. ©Copyright IBM Corp.
enter the year or years.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Notices

Notices 111

112 PD Tools Common Component Customization Guide and User Guide V1R7

Bibliography

File Manager publications
File Manager Customization Guide, SC19-4118
File Manager User’s Guide and Reference, SC19-4119
File Manager User’s Guide and Reference for DB2 Data, SC19-4120
File Manager User’s Guide and Reference for IMS Data, SC19-4121
File Manager User’s Guide and Reference for CICS, SC19-4122
File Manager Fact Sheet, G325-2429
File Manager License Information, GC19-4117
File Manager Program Directory, GI10-8968

Related publications for Problem Determination Tools
IBM Problem Determination Tools for z/OS Common Component Customization Guide
and User Guide, SC19-4159

Related publications for COBOL
IBM COBOL Language Reference, SC26-9046
IBM COBOL Programming Guide for OS/390 & VM, SC26-9049

Related publications for PL/I
IBM VisualAge PL/I Language Reference, SC26-9476
IBM VisualAge PL/I for OS/390 Programming Guide, SC26-9473

Related publications for z/OS
z/OS DFSMS Access Method Services for Catalogs, SC26-7394
z/OS DFSMS Object Access Method Application Programmer's Reference , SC35-0425
z/OS DFSMS: Using Data Sets, SC26-7410
z/OS DFSMS: Using Magnetic Tapes, SC26-7412
z/OS ISPF User's Guide Vol 1, SC34-4822
z/OS ISPF User's Guide Vol II, SC34-4823
z/OS MVS JCL Reference, SA22-7597
z/OS MVS System Messages, Vol 5, SA22-7635
z/OS Support for Unicode Using Conversion Services, SA22-7649
z/OS TSO/E Command Reference, SA22-7782
z/OS TSO/E Programming Services, SA22-7789
z/OS TSO/E REXX Reference, SA22-7790
z/OS TSO/E REXX User's Guide, SA22-7791

© Copyright IBM Corp. 2012, 2016 113

114 PD Tools Common Component Customization Guide and User Guide V1R7

Index

A
ABO

See Automatic Binary Optimizer
LANGX file update utility

activity tracing, startup, shutdown,
and 4

add ports to TCPIP reservation list 10
address space timeout

check 10
assembler programs

preparing 65
assembling programs for ADFz 64
authorizations

required 7

B
breakpoints

Deferred Breakpoints Feature 76
build process

updating 18

C
C program

preparing 58
sample JCL to compile with TEST 59

C++ program
preparing 58
sample JCL to compile 62

changes
summary v

COBOL for MVS and VM
compiling programs for 28

COBOL II programs
preparing 32
sample JCL for compiling 33

COBOL program
sample JCL to compile 36

COBOL programs
optimizing with Automatic Binary

Optimizer LANGX file update
utility 83

preparing 25, 29, 35
sample JCL to compile 30

COBOL SCLM example 72
comments

in options 13
Common Server 1
common server messages 91
compiler listing to side file conversion

utility 69
compiler options for ADFz 17
Compiling for ADFz family of

products 17
compiling programs

COBOL for MVS and VM 28
Enterprise COBOL for z/OS Version

3 24

compiling programs (continued)
Enterprise COBOL for z/OS Version

4 20
Enterprise PL/I for z/OS Version 3.5

and earlier 48
Enterprise PL/I for z/OS Version 3.5

and Version 3.6 42
Enterprise PL/I for z/OS Version 3.7

and later 37
OS/VS COBOL 35
PL/I for MVS and VM 52
VS COBOL II 31
z/OS XL C and C++ 55

Compiling programs for ADFz 17
configuration file keyword

descriptions 4
customer support

See Software Support
customizing the PDTCC Server 7

D
Deferred Breakpoints Feature 76

E
encrypted communications

setting SSL 8
Enterprise COBOL

preparing (Ver 4) 21
sample JCL to compile (Ver 3) 26
sample JCL to compile (Ver 4) 23

Enterprise COBOL for z/OS Version 3
compiling programs for 24

Enterprise COBOL for z/OS Version 4
compiling programs for 20

Enterprise PL/I
preparing (Ver 3.4 and earlier) 49
preparing (Ver 3.6 and Ver 3.6) 44
preparing (Ver 3.7 and later) 39
sample JCL to compile (Ver 3.4 or

earlier) 50
sample JCL to compile (Ver 3.5 and

Ver 3.6) 46
sample JCL to compile (Ver 3.7 or

later) 41
Enterprise PL/I for z/OS Version 3.4 and

earlier
compiling programs for 48

Enterprise PL/I for z/OS Version 3.5 and
Version 3.6

compiling programs for 42
Enterprise PL/I for z/OS Version 3.7 and

later
compiling programs for 37

error scenarios and tracing 101

F
file keyword descriptions

configuration 4
fixes, obtaining 104

H
High Level Assembler SCLM

example 72

I
IBM Support Assistant, searching for

problem resolution 104
ICSF

permitting protected resources 8
IDISCMPS sample member 69
information centers, searching for

problem resolution 103
Interactive Panel Viewer 2
Internet

searching for problem resolution 103
introduction 1
IPVCONFG

update sample 9
IPVLANGO Automatic Binary Optimizer

LANGX file update utility
See Automatic Binary Optimizer

LANGX file update utility
IPVLANGO feature 2
IPVLANGP 75

Deferred Breakpoints Feature 76
IPVLANGP feature 2
IPVLANGX 69

creating side files 69
invocation parameters 71
messages 95
return code examples 100
return codes 100

IPVLANGX feature 2
IPVOPTLM configuration-options

module 14
IPVOPTLM sample member 14
IPVSCLMA sample member 72
IPVSCLMC sample member 72
IPVSFILE sample member 70

K
knowledge bases, searching for problem

resolution 103

L
listings

creating side file 70
storing 69

Locale option 14

© Copyright IBM Corp. 2012, 2016 115

M
messages

Common Server 91
IPVLANGX 95

multicultural support 14

N
notices 109

O
options 13

general description 13
Locale 14
purpose 13

OS/VS COBOL
compiling programs for 35

overview
server 3

P
PDTCC

customizing the server 7
PDTCC Server

customizing 7
PDTOOLS Common Component server

overview 3
PL/I for MVS and VM

compiling programs for 52
PL/I program

preparing 54
sample JCL to compile 54

ports to TCPIP reservation lists
add 10

Preparing programs for ADFz 17
problem determination

describing problems 107
determining business impact 107
submitting problems 108

production environment 19
program

sample JCL for assembling 66
programs

compiling 69
preparing 19

purpose of this document v

R
RACF

example commands 8
readers of this document v
required authorizations 7
return codes from IPVLANGX 100

S
sample data set members

IDISCLMA 72
IDISCLMC 72
IDISCMPS 69
IPVOPTLM 14

sample data set members (continued)
IPVSFILE 70

sample IPVCONFG
update 9

sample JCL
assembling program 66
compile C program with TEST 59
compile C++ program 62
compile COBOL II program 33
compile COBOL program 30, 36
compile Enterprise COBOL programs

(Ver 3) 26
compile Enterprise COBOL programs

(Ver 4) 23
compile Enterprise PL/I 50
compile Enterprise PL/I (Ver 3.5 and

Ver 3.6) 46
compile Enterprise PL/I program (Ver

3.7 or later) 41
compile PL/I program 54

sample server procedure 3
SCLM

including IPVLANGX step in
translator 72

server messages
common 91

server overview 3
server procedure

sample 3
side file formatting utility 75
side files

creating from listing 70
creating with IPVLANGX 69
storing 69

smple server procedure
IPVSR1 3

Software Configuration and Library
Manager

See SCLM
Software Support

contacting 106
describing problems 107
determining business impact 107
receiving updates 106
submitting problems 108

source information files 17
source support 17
SSL encrypted communications

setting 8
startup, shutdown, and activity

tracing 4
summary of changes v

T
technical problem

actions to take vii
terminology v
test environment 19
tracing, startup, shutdown and

activity 4
trademarks 111
troubleshooting 101

V
VS COBOL II

compiling programs for 31

W
WORKDIR

match by running IPVMKDIR 10

Z
z/OS XL C and C++

compiling programs for 55

116 PD Tools Common Component Customization Guide and User Guide V1R7

IBM®

Printed in USA

SC19-4159-05

	Contents
	Preface
	Who should use this document
	Terminology used in this document
	Summary of changes
	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. Introduction to IBM Problem Determination Tools Common Component
	1. Common Server
	2. IPVLANGX, IPVLANGP and IPVLANGO
	3. Interactive Panel Viewer

	Chapter 2. Server overview
	Sample server procedure
	Startup, shutdown, and activity tracing
	Configuration file keyword descriptions

	Chapter 3. Customizing the PDTCC Server
	Required Authorizations
	Example commands for RACF

	Setting SSL encrypted communications
	Update sample IPVCONFG
	Create matching WORKDIR by running job IPVMKDIR
	Check address space timeout
	Add ports to TCPIP reservation list
	Configuration considerations for IBM Explorer for z/OS (z/OS Explorer)

	Chapter 4. Options
	Option descriptions
	EventProcessingExit
	Locale

	Using an IPVOPTLM configuration-options module

	Chapter 5. Quick start guide for compiling and assembling programs for use with IBM Application Delivery Foundation for z Systems family of products
	Updating your build process
	Updating your promotion process
	Preparing your programs
	Enterprise COBOL for z/OS Version 5 programs
	Enterprise COBOL for z/OS Version 4 programs
	Preparing Enterprise COBOL for z/OS Version 4 programs
	Sample JCL for compiling Enterprise COBOL for z/OS Version 4 programs

	Enterprise COBOL for z/OS Version 3 and COBOL for OS/390 and VM programs
	Preparing Enterprise COBOL for z/OS Version 3 and COBOL for OS/390 and VM programs
	Sample JCL for compiling Enterprise COBOL for z/OS Version 3 programs

	COBOL for MVS and VM programs
	Preparing COBOL for MVS and VM programs
	Sample JCL for compiling COBOL for MVS and VM programs

	VS COBOL II programs
	Preparing VS COBOL II programs
	Sample JCL for compiling VS COBOL II programs

	OS/VS COBOL programs
	Preparing OS/VS COBOL programs
	Sample JCL for compiling OS/VS COBOL programs

	Enterprise PL/I Version 3.7 and later programs
	Preparing Enterprise PL/I Version 3.7 and later programs
	Sample JCL for compiling Enterprise PL/I for z/OS Version 3.7 or later programs

	Enterprise PL/I Version 3.5 and Version 3.6 programs
	Preparing Enterprise PL/I Version 3.5 and Version 3.6 programs
	Sample JCL for compiling Enterprise PL/I Version 3.5 or Version 3.6 programs

	Enterprise PL/I Version 3.4 and earlier programs
	Preparing Enterprise PL/I Version 3.4 and earlier programs
	Sample JCL for compiling Enterprise PL/I for z/OS Version 3.4 or earlier programs

	PL/I for MVS and VM and OS PL/I programs
	Preparing PL/I for MVS and VM and OS PL/I programs
	Sample JCL for compiling PL/I for MVS and VM programs

	z/OS XL C and C++ programs
	Preparing z/OS XL C and C++ programs
	Sample JCL for compiling z/OS C programs with TEST
	Sample JCL for compiling z/OS C++ programs

	Assembler programs
	Preparing Assembler programs
	Sample JCL for assembling a program

	Chapter 6. IPVLANGX compiler listing to side file conversion utility
	Creating side files using IPVLANGX
	IPVLANGX parameters

	Including an IPVLANGX step in your SCLM translator
	High Level Assembler SCLM example
	COBOL SCLM example

	Chapter 7. IPVLANGP side file formatting utility
	Deferred Breakpoints Feature

	Chapter 8. IPVLANGO Automatic Binary Optimizer LANGX file update utility
	Chapter 9. Maintaining PD Tools Common Component
	Chapter 10. PDTCC event processing
	Sender load module IPVEPSND
	Usage
	Example

	Receiver load module IPVEPRCV
	IPVCNF00 option EVENTPROCESSINGEXIT
	The Event Processing user exit
	Example customer event processing user exit

	Appendix A. Messages
	Common Server messages
	IPVLANGX messages
	IPVLANGX return codes
	Examples of IPVLANGX return codes

	Appendix B. Troubleshooting
	Error scenarios and tracing

	Support resources and problem-solving information
	Searching IBM support Web sites for a solution
	Searching the information center
	Searching product support documents
	IBM Support Assistant

	Obtaining fixes
	My Notifications
	Receiving support updates through RSS feeds
	If you need to contact IBM Software Support
	Determining the business impact
	Describing problems and gathering information
	Submitting problems

	Notices
	Trademarks

	Bibliography
	File Manager publications
	Related publications for Problem Determination Tools
	Related publications for COBOL
	Related publications for PL/I
	Related publications for z/OS

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Z

